997 resultados para Digital magnetic recording


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The latency variation of the P100M from minute to minute, between morning and afternoon and from day to day was investigated in an unshielded environment using two single channel magnetometers. Latency variation was greatest from minute to minute with relatively little longer term variation. The two magnetometers differed both in mean latency and in the degree of variation. This may be attributed to variation in the performance of the filters which were set a narrow bandwidth for recording in an unshielded environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The practicality of recording visual evoked magnetic fields in 100 subjects 15-87 yr of age using a single channel d.c. SQUID second order gradiometer in an unshielded environment was investigated. The pattern reversal response showed a major positive component between 90 and 120 msec (P100M) while the response to flash produced a major positive component between 90 and 140 msec (P2M). Latency norms of the P100M were more variable than the corresponding P100 and P2 visual evoked potentials. The latency of the P100M may show a steep increase with age in most subjects after about 55 yr whereas only a small trend of latency with age was detected for the flash P2M.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response (VEMR) to pattern reversal stimulation was studied in four normal subjects using a single channel BTI magnetometer. VEMRs were recorded from 20 locations over the occipital scalp and the topographic distribution of the most consistent component (P100M) studied. A single dipole in a sphere model was fitted to the data. Topographic maps were similar when recorded two months apart on the same subject to the same stimulus. Half field (HF) stimulation elicited responses from sources on the medial surface of the calcarine fissure mainly in the contralateral hemisphere as predicted by the cruciform model. The full field (FF) responses to large checks were approximately the sum of the HF responses. However, with small checks, FF stimulation appeared to activate a different combination of sources than the two HFs. In addition, HF topography was more consistent between subjects than FF for small check sizes. Topographic studies of the VEMR may help to explain the analogous visual evoked electrical response and will be essential to define optimal recording positions for clinical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The practicality or recording normative data for two components of the visually evoked magnetic response (VEMR) (P100M and P2M) using a single channel dc-SQUID second order gradiometer in an unshielded environment was investigated. Latency norms of the P100M and P2M were more variable than the corresponding electrical P100 and P2 visual evoked potentials. Methods of improving the normative data for clinical use were discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present dissertation is concerned with the determination of the magnetic field distribution in ma[.rnetic electron lenses by means of the finite element method. In the differential form of this method a Poisson type equation is solved by numerical methods over a finite boundary. Previous methods of adapting this procedure to the requirements of digital computers have restricted its use to computers of extremely large core size. It is shown that by reformulating the boundary conditions, a considerable reduction in core store can be achieved for a given accuracy of field distribution. The magnetic field distribution of a lens may also be calculated by the integral form of the finite element rnethod. This eliminates boundary problems mentioned but introduces other difficulties. After a careful analysis of both methods it has proved possible to combine the advantages of both in a .new approach to the problem which may be called the 'differential-integral' finite element method. The application of this method to the determination of the magnetic field distribution of some new types of magnetic lenses is described. In the course of the work considerable re-programming of standard programs was necessary in order to reduce the core store requirements to a minimum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study characterizes the visually evoked magnetic response (VEMR) to pattern onset/offset stimuli, using a single channel BTi magnetometer. The influence of stimulus parameters and recording protocols on the VEMR is studied with inferences drawn about the nature of cortical processing, its origins and optimal recording strategies. Fundamental characteristics are examined, such as the behaviour of successive averaged and unaveraged responses; the effects of environmental shielding; averaging; inter- and intrasubject variability and equipment specificity. The effects of varying check size, field size, contrast and refractive error on latency, amplitude and topographic distribution are also presented. Latency and amplitude trends are consistent with previous VEP findings and known anatomical properties of the visual system. Topographic results are consistent with the activity of sources organised according to the cruciform model of striate cortex. A striate origin for the VEMR is also suggested by the results to quarter, octant and annulus field stimuli. Similarities in the behaviour and origins of the sources contributing to the CIIm and CIIIm onset peaks are presented for a number of stimulus conditions. This would be consistent with differing processing event in the same, or similar neuronal populations. Focal field stimuli produce less predictable responses than full or half fields, attributable to a reduced signal to noise ratio and an increased sensitivity to variations in cortical morphology. Problems with waveform peak identification are encountered for full field stimuli that can only be resolved by the careful choice of stimulus parameters, comparisons with half field responses or with reference to the topographic distribution of each waveform peak. An anatomical study of occipital lobe morphology revealed large inter- and intrasubject variation in calcarine fissure shape and striate cortex distribution. An appreciation of such variability is important for VEMR interpretation, due to the technique's sensitivity to source depth and orientation, and it is used to explain the experimental results obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problems of using a single channel magnetometer (BTi, Model 601) in an unshielded clinical environment to measure visual evoked magnetic responses (VEMR) were studied. VEMR to flash and pattern reversal stimuli were measured in 100 normal subjects. Two components, the P100M to pattern reversal and P2M to flash, were measured successfully in the majority of patients. The mean latencies of these components in different decades of life were more variable than the visual evoked potentials (VEP) that have been recorded to these stimuli. The latency of the P100M appeared to increase significantly after about 55 years of age whereas little change occurred for the flash P2M. The effects of blur, check size, stimulus size and luminance intensity on the latency and amplitude of the VEMR were studied. Blurring a small (32') check significantly increased latency whereas blurring a large (70') check had little effect on latency. Increasing check size significantly reduced latency of the P100M but had little effect on amplitude. Increasing the field size decreases the latency and increases the amplitude of the P100M. Within a normal subject, most of the temporal variability of the P100M appeared to be associated with run to run variation rather than between recording sessions on the same day or between days. Reproducibility of the P100M was improved to a degree by employing a magnetically shielded room. Increasing flash intensity decreases the latency and increases the amplitude of the P2M component. The magnitude of the effects of varying stimulus parameters on the VEMR were frequently greater than is normally seen in the VEP. The topography of the P100M and P2M varied over the scalp in normal subjects. Full field responses to a large check could be explained as approximately the sum of the half field responses and were consistent with the cruciform model of the visual cortex. Preliminary source localisation data suggested a shallower source in the visual cortex for the flash P2M compared with the P100M. The data suggest that suitable protocols could be devised to obtain normative data of sufficient quality to use the VEMR to flash and pattern clinically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A newly released commercial autorefractor, the Shin-Nippon SRW-5000 (Japan), has been found to be valid compared to subjective refraction and repeatable over a wide prescription range. Its binocular open field-of-view allows the accommodative state to be monitored while a natural environment is viewed. In conventional static mode, the device can take up to 45 readings in 1min using digital image analysis of the reflected retinal image of a measurement ring. Continuous on-line analysis of the ring provides high (up to 60Hz) temporal resolution of the refractive state to an accuracy of <0.001D. Pupil size can also be analysed to a resolution of <0.001mm. The measurement of accommodation and pupil size was relatively unaffected by eccentricity of viewing up to ±10° and instrument focusing inaccuracies of ±5mm. The resolution properties of the analysis are shown to be ideal for measurement of dynamic accommodation and pupil responses. Copyright © 2001 The College of Optometrists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long term recording of biomedical signals such as ECG, EMG, respiration and other information (e.g. body motion) can improve diagnosis and potentially monitor the evolution of many widespread diseases. However, long term monitoring requires specific solutions, portable and wearable equipment that should be particularly comfortable for patients. The key-issues of portable biomedical instrumentation are: power consumption, long-term sensor stability, comfortable wearing and wireless connectivity. In this scenario, it would be valuable to realize prototypes using available technologies to assess long-term personal monitoring and foster new ways to provide healthcare services. The aim of this work is to discuss the advantages and the drawbacks in long term monitoring of biopotentials and body movements using textile electrodes embedded in clothes. The textile electrodes were embedded into garments; tiny shirt and short were used to acquire electrocardiographic and electromyographic signals. The garment was equipped with low power electronics for signal acquisition and data wireless transmission via Bluetooth. A small, battery powered, biopotential amplifier and three-axes acceleration body monitor was realized. Patient monitor incorporates a microcontroller, analog-to-digital signal conversion at programmable sampling frequencies. The system was able to acquire and to transmit real-time signals, within 10 m range, to any Bluetooth device (including PDA or cellular phone). The electronics were embedded in the shirt resulting comfortable to wear for patients. Small size MEMS 3-axes accelerometers were also integrated. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The report presents the film 10th century. The South of the Royal Palace in Great Preslav. It consists of two parts – 10th century. The Royal Palace in Great Prelsav. The Square with the Pinnacle and The Ruler’s Lodgings. 3D and virtual reconstructions of an architectural ensemble – part of the Preslav Royal Court unearthed during archaeological researches are used in the film. 3D documentaries have already gained popularity around the world and are well received by both scholars and the public at large. One of the distinguished tourist destinations in Bulgaria is Great Preslav – capital of the mediaeval Bulgarian state and a significant cultural center of the European Southeast in 9th–10th centuries, too. The first part of the film is created with the financial support of America for Bulgaria Foundation and the second – with the funding of Bulgarian National Science Fund at the Ministry of Education, Youth and Science. A team of almost 20 members worked on the film, including computer specialists, professional actors, and translators in the four main European languages – English, German, French and Russian, Trima Sound Recording Studio. In the first part of the 3D film are shown a segment of the Royal Palace, the square with the water pinnacle and the adjacent buildings – an important structural element of the town-planning of the Preslav Court center in the 10th century. In the second part the accent is the southern part of the Royal Palace in Great Preslav, where the personal residence of the Preslav ruler’s dynasty is situated. The work on the virtual reconstruction was done by Virtual Archaeology club at the Mathematical School, Shumen. Due to the efforts of its members it is now clear how the square in front of the southern gate looked like.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The premise of this dissertation is to create a highly integrated platform that combines the most current recording technologies for brain research through the development of new algorithms for three-dimensional (3D) functional mapping and 3D source localization. The recording modalities that were integrated include: Electroencephalography (EEG), Optical Topographic Maps (OTM), Magnetic Resonance Imaging (MRI), and Diffusion Tensor Imaging (DTI). This work can be divided into two parts: The first part involves the integration of OTM with MRI, where the topographic maps are mapped to both the skull and cortical surface of the brain. This integration process is made possible through the development of new algorithms that determine the probes location on the MRI head model and warping the 2D topographic maps onto the 3D MRI head/brain model. Dynamic changes of the brain activation can be visualized on the MRI head model through a graphical user interface. The second part of this research involves augmenting a fiber tracking system, by adding the ability to integrate the source localization results generated by commercial software named Curry. This task involved registering the EEG electrodes and the dipole results to the MRI data. Such Integration will allow the visualization of fiber tracts, along with the source of the EEG, in a 3D transparent brain structure. The research findings of this dissertation were tested and validated through the participation of patients from Miami Children Hospital (MCH). Such an integrated platform presented to the medical professionals in the form of a user-friendly graphical interface is viewed as a major contribution of this dissertation. It should be emphasized that there are two main aspects to this research endeavor: (1) if a dipole could be situated in time at its different positions, its trajectory may reveal additional information on the extent and nature of the brain malfunction; (2) situating such a dipole trajectory with respect to the fiber tracks could ensure the preservation of these fiber tracks (axons) during surgical interventions, preserving as a consequence these parts of the brain that are responsible for information transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemoproteins are a very important class of enzymes in nature sharing the essentially same prosthetic group, heme, and are good models for exploring the relationship between protein structure and function. Three important hemoproteins, chloroperoxidase (CPO), horseradish peroxidase (HRP), and cytochrome P450cam (P450cam), have been extensively studied as archetypes for the relationship between structure and function. In this study, a series of 1D and 2D NMR experiments were successfully conducted to contribute to the structural studies of these hemoproteins. ^ During the epoxidation of allylbenzene, CPO is converted to an inactive green species with the prosthetic heme modified by addition of the alkene plus an oxygen atom forming a five-membered chelate ring. Complete assignment of the NMR resonances of the modified porphyrin extracted and demetallated from green CPO unambiguously established the structure of this porphyrin as an NIII-alkylated product. A novel substrate binding motif of CPO was proposed from this concluded regiospecific N-alkylation structure. ^ Soybean peroxidase (SBP) is considered as a more stable, more abundant and less expensive substitute of HRP for industrial applications. A NMR study of SBP using 1D and 2D NOE methods successfully established the active site structure of SBP and consequently fills in the blank of the SBP NMR study. All of the hyperfine shifts of the SBP-CN- complex are unambiguously assigned together with most of the prosthetic heme and all proximal His170 resonances identified. The active site structure of SBP revealed by this NMR study is in complete agreement with the recombinant SBP crystal structure and is highly similar to that of the HRP with minor differences. ^ The NMR study of paramagnetic P450cam had been greatly restricted for a long time. A combination of 2D NMR methods was used in this study for P450cam-CN - complexes with and without camphor bound. The results lead to the first unequivocal assignments of all heme hyperfine-shifted signals, together with certain correlated diamagnetic resonances. The observed alternation of the assigned novel proximal cysteine β-CH2 resonances induced by camphor binding indicated a conformational change near the proximal side.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. ^ To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. ^ To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O 2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.^