976 resultados para Digital Elevation Models


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The morpho-structural evolution of oceanic islands results from competition between volcano growth and partial destruction by mass-wasting processes. We present here a multi-disciplinary study of the successive stages of development of Faial (Azores) during the last 1 Myr. Using high-resolution digital elevation model (DEM), and new K/Ar, tectonic, and magnetic data, we reconstruct the rapidly evolving topography at successive stages, in response to complex interactions between volcanic construction and mass wasting, including the development of a graben. We show that: (1) sub-aerial evolution of the island first involved the rapid growth of a large elongated volcano at ca. 0.85 Ma, followed by its partial destruction over half a million years; (2) beginning about 360 ka a new small edifice grew on the NE of the island, and was subsequently cut by normal faults responsible for initiation of the graben; (3) after an apparent pause of ca. 250 kyr, the large Central Volcano (CV) developed on the western side of the island at ca 120 ka, accumulating a thick pile of lava flows in less than 20 kyr, which were partly channelized within the graben; (4) the period between 120 ka and 40 ka is marked by widespread deformation at the island scale, including westward propagation of faulting and associated erosion of the graben walls, which produced sedimentary deposits; subsequent growth of the CV at 40 ka was then constrained within the graben, with lava flowing onto the sediments up to the eastern shore; (5) the island evolution during the Holocene involves basaltic volcanic activity along the main southern faults and pyroclastic eruptions associated with the formation of a caldera volcano-tectonic depression. We conclude that the whole evolution of Faial Island has been characterized by successive short volcanic pulses probably controlled by brief episodes of regional deformation. Each pulse has been separated by considerable periods of volcanic inactivity during which the Faial graben gradually developed. We propose that the volume loss associated with sudden magma extraction from a shallow reservoir in different episodes triggered incremental downward graben movement, as observed historically, when immediate vertical collapse of up to 2 m was observed along the western segments of the graben at the end of the Capelinhos eruptive crises (1957-58).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 30 M m3 rockslide that occurred on the east face of Turtle Mountain in the Crowsnest Pass area (Alberta) in 1903 is one of the most famous landslides in the world. In this paper, the structural features of the South part of Turtle Mountain are investigated in order to understand the present-day scar morphology and to identify the most important failure mechanisms. The structural features were mapped using a high resolution digital elevation model (DEM) in order to have a large overview of the relevant structural features. At the same time, a field survey was carried out and small scale fractures were analyzed in different parts of southern Turtle Mountain in order to confirm the DEM analysis. Results allow to identify six main discontinuity sets that influence the Turtle Mountain morphology. These discontinuity sets were then used to identify the potential failure mechanisms affecting Third Peak and South Peak area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coltop3D is a software that performs structural analysis by using digital elevation model (DEM) and 3D point clouds acquired with terrestrial laser scanners. A color representation merging slope aspect and slope angle is used in order to obtain a unique code of color for each orientation of a local slope. Thus a continuous planar structure appears in a unique color. Several tools are included to create stereonets, to draw traces of discontinuities, or to compute automatically density stereonet. Examples are shown to demonstrate the efficiency of the method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A factor limiting preliminary rockfall hazard mapping at regional scale is often the lack of knowledge of potential source areas. Nowadays, high resolution topographic data (LiDAR) can account for realistic landscape details even at large scale. With such fine-scale morphological variability, quantitative geomorphometric analyses become a relevant approach for delineating potential rockfall instabilities. Using digital elevation model (DEM)-based ?slope families? concept over areas of similar lithology and cliffs and screes zones available from the 1:25,000 topographic map, a susceptibility rockfall hazard map was drawn up in the canton of Vaud, Switzerland, in order to provide a relevant hazard overview. Slope surfaces over morphometrically-defined thresholds angles were considered as rockfall source zones. 3D modelling (CONEFALL) was then applied on each of the estimated source zones in order to assess the maximum runout length. Comparison with known events and other rockfall hazard assessments are in good agreement, showing that it is possible to assess rockfall activities over large areas from DEM-based parameters and topographical elements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 2009-2010 Data Fusion Contest organized by the Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society was focused on the detection of flooded areas using multi-temporal and multi-modal images. Both high spatial resolution optical and synthetic aperture radar data were provided. The goal was not only to identify the best algorithms (in terms of accuracy), but also to investigate the further improvement derived from decision fusion. This paper presents the four awarded algorithms and the conclusions of the contest, investigating both supervised and unsupervised methods and the use of multi-modal data for flood detection. Interestingly, a simple unsupervised change detection method provided similar accuracy as supervised approaches, and a digital elevation model-based predictive method yielded a comparable projected change detection map without using post-event data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os processos de erosão hídrica em Cabo Verde são os mais marcantes da dinâmica actual das vertentes, pois são os mais comuns e que afectam áreas extensasdurante a curta estação húmida de três meses. A ocorrência de episódios chuvosos concentrados no tempo e com uma evidente irregularidade espacial permitem umaacentuada erosividade das precipitações, marcada por uma forte irregularidade regional. A forte variabilidade das formas de relevo, a diversidade da natureza das unidadesgeológicas e a multiplicidade de ocupação do solo favorecem condições deerodibilidade muito contrastadas no espaço. O objectivo deste trabalho é estabelecer um modelo desusceptibilidade à erosão hídricaem função de factores geomorfológicos (declive, perfil e traçado das vertentes eerodibilidade das unidades litológicas e dos materiais de cobertura), climáticos(intensidade pluviométrica) e de ocupação do solo para as bacias das ribeiras dos Picose Seca. Os resultados foram obtidos com recurso ao ambiente de Sistemas deInformação Geográfica (SIG). Este trabalho surge na sequência de outros já realizadospelos autores, onde se apresentaram as condições de erodibilidade e erosividade paraáreas mais restritas da Ilha de Santiago. O modelo de susceptibilidade à erosão hídrica resultou do cruzamento dos mapas dedeclives, de perfil e do traçado das vertentes, obtidos a partir do modelo digital deterreno (DTM), do mapa geológico, da distribuição espacial da intensidadepluviométrica e da densidade de ocupação do solo, tendo em conta que são estas asprincipais condicionantes de erosão hídrica, referidas pelos autores que estudaram estaregião. Cada um destes mapas foi reclassificado com base numa análise qualitativa dograu de erodibilidade, sendo atribuído um número de ordem a cada classe, em função da sua susceptibilidade à erosão hídrica, conforme foi localmente reconhecido. Verifica-se que as áreas de maior susceptibilidade à erosão hídrica são as do sectorsudeste da bacia da Ribeira Seca e as vertentes dos principais vales da bacia da Ribeira dos Picos, onde se encontram as unidades geológicas mais friáveis, os declives mais acentuados e onde predominam sectores das vertentes de traçado côncavo, a que seassocia pontualmente a mais elevada intensidade pluviométrica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Na Ilha de Santiago, em Cabo Verde, a erosão hídrica é o processo que afecta áreas mais extensas. A ocorrência de aguaceiros intensos e concentrados no tempo e no espaço promovem uma marcada erosividade das precipitações, com forte irregularidade regional. A grande variabilidade dos declives e das formas das vertentes, associadas à diversidade litológica, bem como à multiplicidade de ocupação do solo, permitem condições de erodibilidade muito contrastadas no espaço. O objectivo deste trabalho é obter um mapa de susceptibilidade à erosão hídrica para a bacia da Ribeira Seca (Santiago oriental) com base no modelo digital do terreno (MDT), nos mapas geológico e de ocupação do solo e na distribuição da erosividade das precipitações. Verifica-se que o sector sudeste da bacia é o mais susceptível à erosão hídrica, pois nele ocorrem a maior concentração diária das precipitações e as condições geomorfológicas e de coberto do solo de mais elevada erodibilidade.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a differential synthetic apertureradar (SAR) interferometry (DIFSAR) approach for investigatingdeformation phenomena on full-resolution DIFSAR interferograms.In particular, our algorithm extends the capabilityof the small-baseline subset (SBAS) technique that relies onsmall-baseline DIFSAR interferograms only and is mainly focusedon investigating large-scale deformations with spatial resolutionsof about 100 100 m. The proposed technique is implemented byusing two different sets of data generated at low (multilook data)and full (single-look data) spatial resolution, respectively. Theformer is used to identify and estimate, via the conventional SBAStechnique, large spatial scale deformation patterns, topographicerrors in the available digital elevation model, and possibleatmospheric phase artifacts; the latter allows us to detect, onthe full-resolution residual phase components, structures highlycoherent over time (buildings, rocks, lava, structures, etc.), as wellas their height and displacements. In particular, the estimation ofthe temporal evolution of these local deformations is easily implementedby applying the singular value decomposition technique.The proposed algorithm has been tested with data acquired by theEuropean Remote Sensing satellites relative to the Campania area(Italy) and validated by using geodetic measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Map units directly related to properties of soil-landscape are generated by local soil classes. Therefore to take into consideration the knowledge of farmers is essential to automate the procedure. The aim of this study was to map local soil classes by computer-assisted cartography (CAC), using several combinations of topographic properties produced by GIS (digital elevation model, aspect, slope, and profile curvature). A decision tree was used to find the number of topographic properties required for digital cartography of the local soil classes. The maps produced were evaluated based on the attributes of map quality defined as precision and accuracy of the CAC-based maps. The evaluation was carried out in Central Mexico using three maps of local soil classes with contrasting landscape and climatic conditions (desert, temperate, and tropical). In the three areas the precision (56 %) of the CAC maps based on elevation as topographical feature was higher than when based on slope, aspect and profile curvature. The accuracy of the maps (boundary locations) was however low (33 %), in other words, further research is required to improve this indicator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing availability and precision of digital elevation model (DEM) helps in the assessment of landslide prone areas where only few data are available. This approach is performed in 6 main steps which include: DEM creation; identification of geomorphologic features; determination of the main sets of discontinuities; mapping of the most likely dangerous structures; preliminary rock-fall assessment; estimation of the large instabilities volumes. The method is applied to two the cases studies in the Oppstadhornet mountain (730m alt): (1) a 10 millions m3 slow-moving rockslide and (2) a potential high-energy rock falling prone area. The orientations of the foliation and of the major discontinuities have been determined directly from the DEM. These results are in very good agreement with field measurements. Spatial arrangements of discontinuities and foliation with the topography revealed hazardous structures. Maps of potential occurrence of these hazardous structures show highly probable sliding areas at the foot of the main landslide and potential rock falls in the eastern part of the mountain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new method is used to estimate the volumes of sediments of glacial valleys. This method is based on the concept of sloping local base level and requires only a digital terrain model and the limits of the alluvial valleys as input data. The bedrock surface of the glacial valley is estimated by a progressive excavation of the digital elevation model (DEM) of the filled valley area. This is performed using an iterative routine that replaces the altitude of a point of the DEM by the mean value of its neighbors minus a fixed value. The result is a curved surface, quadratic in 2D. The bedrock surface of the Rhone Valley in Switzerland was estimated by this method using the free digital terrain model Shuttle Radar Topography Mission (SRTM) (~92 m resolution). The results obtained are in good agreement with the previous estimations based on seismic profiles and gravimetric modeling, with the exceptions of some particular locations. The results from the present method and those from the seismic interpretation are slightly different from the results of the gravimetric data. This discrepancy may result from the presence of large buried landslides in the bottom of the Rhone Valley.