989 resultados para Differential-mode
Resumo:
The increasing prevalence of International New Ventures (INVs) during the past twenty years has been highlighted by numerous studies (Knight and Cavusgil, 1996, Moen, 2002). International New Ventures are firms, typically small to medium enterprises, that internationalise within six years of inception (Oviatt and McDougall, 1997). To date there has been no general consensus within the literature on a theoretical framework of internationalisation to explain the internationalisation process of INVs (Madsen and Servais, 1997). However, some researchers have suggested that the innovation diffusion model may provide a suitable theoretical framework (Chetty & Hamilton, 1996, Fan & Phan, 2007).The proposed model was based on the existing and well-established innovation diffusion theories drawn from consumer behaviour and internationalisation literature to explain the internationalisation process of INVs (Lim, Sharkey, and Kim, 1991, Reid, 1981, Robertson, 1971, Rogers, 1962, Wickramasekera and Oczkowski, 2006). The results of this analysis indicated that the synthesied model of export adoption was effective in explaining the internationalisation process of INVs within the Queensland Food and Beverage Industry. Significantly the results of the analysis also indicated that features of the original I-models developed in the consumer behaviour literature, that had limited examination within the internationalisation literature were confirmed. This includes the ability of firms, or specifically decision-makers, to skip stages based om previous experience.
Resumo:
High density development has been seen as a contribution to sustainable development. However, a number of engineering issues play a crucial role in the sustainable construction of high rise buildings. Non linear deformation of concrete has an adverse impact on high-rise buildings with complex geometries, due to differential axial shortening. These adverse effects are caused by time dependent behaviour resulting in volume change known as ‘shrinkage’, ‘creep’ and ‘elastic’ deformation. These three phenomena govern the behaviour and performance of all concrete elements, during and after construction. Reinforcement content, variable concrete modulus, volume to surface area ratio of the elements, environmental conditions, and construction quality and sequence influence on the performance of concrete elements and differential axial shortening will occur in all structural systems. Its detrimental effects escalate with increasing height and non vertical load paths resulting from geometric complexity. The magnitude of these effects has a significant impact on building envelopes, building services, secondary systems, and lifetime serviceability and performance. Analytical and test procedures available to quantify the magnitude of these effects are limited to a very few parameters and are not adequately rigorous to capture the complexity of true time dependent material response. With this in mind, a research project has been undertaken to develop an accurate numerical procedure to quantify the differential axial shortening of structural elements. The procedure has been successfully applied to quantify the differential axial shortening of a high rise building, and the important capabilities available in the procedure have been discussed. A new practical concept, based on the variation of vibration characteristic of structure during and after construction and used to quantify the axial shortening and assess the performance of structure, is presented.
Resumo:
Differential axial shortening in vertical members of reinforced concrete high-rise buildings occurs due to shrinkage, creep and elastic shortening, which are time dependent effects of concrete. This has to be quantified in order to make adequate provisions and mitigate its adverse effects. This paper presents a novel procedure for quantifying the axial shortening of vertical members using the variations in vibration characteristics of the structure, in lieu of using gauges which can pose problems in use during and after the construction. This procedure is based on the changes in the modal flexiblity matrix which is expressed as a function of the mode shapes and the reciprocal of the natural frequencies. This paper will present the development of this novel procedure.
Resumo:
Fracture behavior of Cu-Ni laminate composites has been investigated by tensile testing. It was found that as the individual layer thickness decreases from 100 to 20nm, the resultant fracture angle of the Cu-Ni laminate changes from 72 degrees to 50 degrees. Cross-sectional observations reveal that the fracture of the Ni layers transforms from opening to shear mode as the layer thickness decreases while that of the Cu layers keeps shear mode. Competition mechanisms were proposed to understand the variation in fracture mode of the metallic laminate composites associated with length scale.
Resumo:
Differential distortion comprising axial shortening and consequent rotation in concrete buildings is caused by the time dependent effects of “shrinkage”, “creep” and “elastic” deformation. Reinforcement content, variable concrete modulus, volume to surface area ratio of elements and environmental conditions influence these distortions and their detrimental effects escalate with increasing height and geometric complexity of structure and non vertical load paths. Differential distortion has a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing methods for quantifying these effects are unable to capture the complexity of such time dependent effects. This paper develops a numerical procedure that can accurately quantify the differential axial shortening that contributes significantly to total distortion in concrete buildings by taking into consideration (i) construction sequence and (ii) time varying values of Young’s Modulus of reinforced concrete and creep and shrinkage. Finite element techniques are used with time history analysis to simulate the response to staged construction. This procedure is discussed herein and illustrated through an example.