996 resultados para Dependent Schrodinger-equation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study the behavior of charged particles immersed in a peculiar configuration of magnetic fields, which has a main constant field B(0) and a superimposed, transversal perturbation field B(1) sin(omega(p)t), with B(1) << B(0). By taking Cartesian coordinates and placing B(0) along the z axis and B(1) sin (omega(p)t) on the x axis, an analytical solution for y(t) may be obtained by solving an integrodifferential equation. Besides, the solution z(t) also exhibits a very interesting dynamics, and the entire system is conditioned by resonances between the particle orbit frequencies and the frequency of the magnetic transversal perturbation, omega(p). In this work we also discuss numerical simulations for the related particle trajectories, as well as potential applications in the context of separation phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We set up a new calculational framework for the Yang-Mills vacuum transition amplitude in the Schrodinger representation. After integrating out hard-mode contributions perturbatively and performing a gauge-invariant gradient expansion of the ensuing soft-mode action, a manageable saddle-point expansion for the vacuum overlap can be formulated. In combination with the squeezed approximation to the vacuum wave functional this allows for an essentially analytical treatment of physical amplitudes. Moreover, it leads to the identification of dominant and gauge-invariant classes of gauge field orbits which play the role of gluonic infrared (IR) degrees of freedom. The latter emerge as a diverse set of saddle-point solutions and are represented by unitary matrix fields. We discuss their scale stability, the associated virial theorem and other general properties including topological quantum numbers and action bounds. We then find important saddle-point solutions (most of them solitons) explicitly and examine their physical impact. While some are related to tunneling solutions of the classical Yang-Mills equation, i.e. to instantons and merons, others appear to play unprecedented roles. A remarkable new class of IR degrees of freedom consists of Faddeev-Niemi type link and knot solutions, potentially related to glueballs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the 'negative' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector nonlinear Schrodinger equations appear as lowest-negative and second-positive flows within the extended hierarchy. This is fully analogous to the well known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the 'negative' sector of the sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we consider the effect of a spatially dependent mass over the solution of the Klein-Gordon equation in 1 + 1 dimensions, particularly the case of inversely linear scalar potential, which usually presents problems of divergence of the ground-state wave function at the origin, and possible nonexistence of the even-parity wave functions. Here we study this problem, showing that for a certain dependence of the mass with respect to the coordinate, this problem disappears. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Dirac equation is exactly solved for a pseudoscalar linear plus Coulomb-like potential in a two-dimensional world. This sort of potential gives rise to an effective quadratic plus inversely quadratic potential in a Sturm-Liouville problem, regardless the sign of the parameter of the linear potential, in sharp contrast with the Schrodinger case. The generalized Dirac oscillator already analyzed in a previous work is obtained as a particular case. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We make a change of variables and a time reparametrization in the Schrödinger equation in order to obtain the propagator of a charged oscillator with a time-dependent mass and frequency under the influence of time-varying electric and magnetic fields, in terms of the simple propagators of harmonic oscillators with constant frequencies and masses. We also discuss the Jackiw transformation and others as a particular case of ours. © 1991.