996 resultados para Dental air abrasion
Resumo:
An experimental programme in 2007 used three air suspended heavy vehicles travelling over typical urban roads to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents methodology, interim analysis and partial results from that programme. Alterations to dynamic measures derived from axle-to-chassis forces for the case of standard-sized longitudinal air lines vs. the test case where larger longitudinal air lines were fitted are presented and discussed. This leads to conclusions regarding the possibility that dynamic loadings between heavy vehicle suspensions and chassis may be reduced by fitting larger longitudinal air lines to air-suspended heavy vehicles. Reductions in the shock and vibration loads to heavy vehicle suspension components could lead to lighter and more economical chassis and suspensions. This could therefore lead to reduced tare and increased payloads without an increase in gross vehicle mass.
Resumo:
Air quality and temperatures in classrooms are important factors influencing the student learning process. To improve the thermal comfort of classrooms for Queensland State Schools, Queensland Government initiated the "Cooler Schools Program". One of the key objectives under this program was to develop low energy cooling systems as an alternative to high energy demand conventioanl split system of air conditioning (AC) systems. In order to compare and evaluate the energy performance of different types of air conditioners installed in classrooms, monitoring systems were installed in a state primary school located in the greater outer urban area of Brisbane, Australia. It was found that the installation of monitoring systems could have a significant impact on the accuracy of the data being collected. By comparing the estimated energy efficiency ratio (EER)for four qualified air conditioners included in this study, it was also found that AC6, a hybrid air conditioner newly developed by the Queensland Department of Public Works (DPW), had the best energy performance, although the current data were not able to show the full advantages of the system.
Resumo:
The self-assembling behavior and microscopic structure of zinc oxide nanoparticle Langmuir-Blodgett monolayer films were investigated for the case of zinc oxide nanoparticles coated with a hydrophobic layer of dodecanethiol. Evolution of nanoparticle film structure as a function of surface pressure (π) at the air-water interface was monitored in situ using Brewster’s angle microscopy, where it was determined that π=16 mN/m produced near-defect-free monolayer films. Transmission electron micrographs of drop-cast and Langmuir-Schaefer deposited films of the dodecanethiol-coated zinc oxide nanoparticles revealed that the nanoparticle preparation method yielded a microscopic structure that consisted of one-dimensional rodlike assemblies of nanoparticles with typical dimensions of 25 x 400 nm, encased in the organic dodecanethiol layer. These nanoparticle-containing rodlike micelles were aligned into ordered arrangements of parallel rods using the Langmuir-Blodgett technique.
Resumo:
Dental pulp cells (DPCs) have shown promising potential in dental tissue repair and regeneration. However, during in vitro culture, these cells undergo replicative senescence and result in significant alteration in cell proliferation and differentiation. Recently, the transcription factors of Oct-4, Sox2, c-Myc, and Klf4 have been reported to play a regulatory role in the stem cell self-renewal process, namely cell reprogramming. Therefore, it is interesting to know whether the replicative senescence during the culture of dental pulp cells is related to the diminishing of the expression of these transcription factors. In this study, we investigated the expression of the reprogramming markers Oct-4, Sox2, and c-Myc in the in vitro explant cultured dental pulp tissues and explant cultured dental pulp cells (DPCs) at various passages by immunofluorescence staining and real-time polymerase chain reaction analysis. Our results demonstrated that Oct-4, Sox2, and c-Myc translocated from nucleus in the first 2 passages to cytoplasm after the third passage in explant cultured DPCs. The mRNA expression of Oct-4, Sox2, and c-Myc elevated significantly over the first 2 passages, peaked at second passage (P < .05), and then decreased along the number of passages afterwards (P < .05). For the first time we demonstrated that the expression of reprogramming markers Oct-4, Sox2, and c-Myc was detectable in the early passaged DPCs, and the sequential loss of these markers in the nucleus during DPC cultures might be related to the cell fate of dental pulp derived cells during the long-term in vitro cultivation under current culture conditions.
Resumo:
We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.
Resumo:
This article presents the results of a study on the association between measured air pollutants and the respiratory health of resident women and children in Lao PDR, one of the least developed countries in Southeast Asia. The study, commissioned by the World Health Organisation, included PM10, CO and NO2 measurements made inside 181 dwellings in nine districts within two provinces in Lao PDR over a 5- month period (12/05–04/06), and respiratory health information (via questionnaires and peak expiratory flow rate (PEFR) measurements) for all residents in the same dwellings. Adjusted odds ratios were calculated separately for each health outcome using binary logistic regression. There was a strong and consistent positive association between NO2 and CO for almost all questionnaire-based health outcomes for both women and children. Women in dwellings with higher measured NO2 had more than triple of the odds of almost all of the health outcomes, and higher concentrations of NO2 and CO were significantly associated with lower PEFR. This study supports a growing literature confirming the role of indoor air pollution in the burden of respiratory disease in developing countries. The results will directly support changes in health and housing policy in Lao PDR.
Resumo:
Inadequate air quality and the inhalation of airborne pollutants pose many risks to human health and wellbeing, and are listed among the top environmental risks worldwide. The importance of outdoor air quality was recognised in the 1950s and indoor air quality emerged as an issue some time later and was soon recognised as having an equal, if not greater importance than outdoor air quality. Identification of ambient air pollution as a health hazard was followed by steps, undertaken by a broad range of national and international professional and government organisations, aimed at reduction or elimination of the hazard. However, the process of achieving better air quality is still in progress. The last 10 years or so have seen an unprecedented increase in the interest in, and attention to, airborne particles, with a special focus on their finer size fractions, including ultrafine (< 0.1 m) and their subset, nano particles (< 0.05 m). This paper discusses the current status of scientific knowledge on the links between air quality and health, with a particular focus on airborne particulate matter, and the directions taken by national and international bodies to improve air quality.
Resumo:
Atmospheric concentration of total suspended particulate matter (TSP) and associated heavy metals are a great concern due to their adverse health impacts and contribution to stormwater pollution. This paper discusses the outcomes of a study which investigated the variation of atmospheric TSP and heavy metal concentrations with traffic and land use characteristics during weekdays and weekends. Data for this study was gathered from fifteen sites at the Gold Coast, Australia using a high volume air sampler. The study detected consistently high TSP concentrations during weekdays compared to weekends. This confirms the significant influence of traffic related sources on TSP loads during weekdays. Both traffic and land use related sources equally contribute to TSP during weekends. Almost all the measured heavy metals showed high concentration on weekdays compared to weekends indicating significant contributions from traffic related emissions. Among the heavy metals, Zn concentration was the highest followed by Pb. It is postulated that re-suspension of previously deposited reserves was the main Pb source. Soil related sources were the main contributors of Mn.