959 resultados para Dendritic Fasciculation
Resumo:
The innate and adaptive immune responses of dendritic cells (DCs) to enteroinvasive Escherichia coli (EIEC) infection were compared with DC responses to Shigella flexneri infection. EIEC triggered DCs to produce interleukin (IL)-10, IL-12 and tumour necrosis factor (TNF)-alpha, whereas S. flexneri induced only the production of TNF-alpha. Unlike S. flexneri, EIEC strongly increased the expression of toll like receptor (TLR)-4 and TLR-5 in DCs and diminished the expression of co-stimulatory molecules that may cooperate to inhibit CD4(+) T-lymphocyte proliferation. The inflammation elicited by EIEC seems to be related to innate immunity both because of the aforementioned results and because only EIEC were able to stimulate DC transmigration across polarised Caco-2 cell monolayers, a mechanism likely to be associated with the secretion of CC chemokine ligands (CCL) 20 and TNF-alpha. Understanding intestinal DC biology is critical to unravelling the infection strategies of EIEC and may aid in the design of treatments for infectious diseases.
Resumo:
Vaccination with peptide 10 (P10), derived from the Paracoccidioides brasiliensis glycoprotein 43 (gp43), induces a Th1 response that protects mice in an intratracheal P. brasiliensis infection model. Combining P10 with complete Freund's adjuvant (CFA) or other adjuvants further increases the peptide's antifungal effect. Since dendritic cells (DCs) are up to 1,000-fold more efficient at activating T cells than CFA, we examined the impact of P10-primed bone-marrow-derived DC vaccination in mice. Splenocytes from mice immunized with P10 were stimulated in vitro with P10 or P10-primed DCs. T cell proliferation was significantly increased in the presence of P10-primed DCs compared to the peptide. The protective efficacy of P10-primed DCs was studied in an intratracheal P. brasiliensis model in BALB/c mice. Administration of P10-primed DCs prior to (via subcutaneous vaccination) or weeks after (via either subcutaneous or intravenous injection) P. brasiliensis infection decreased pulmonary damage and significantly reduced fungal burdens. The protective response mediated by the injection of primed DCs was characterized mainly by an increased production of gamma interferon (IFN-gamma) and interleukin 12 (IL-12) and a reduction in IL-10 and IL-4 compared to those of infected mice that received saline or unprimed DCs. Hence, our data demonstrate the potential of P10-primed DCs as a vaccine capable of both the rapid protection against the development of serious paracoccidioidomycosis or the treatment of established P. brasiliensis disease.
Resumo:
We analytically study the input-output properties of a neuron whose active dendritic tree, modeled as a Cayley tree of excitable elements, is subjected to Poisson stimulus. Both single-site and two-site mean-field approximations incorrectly predict a nonequilibrium phase transition which is not allowed in the model. We propose an excitable-wave mean-field approximation which shows good agreement with previously published simulation results [Gollo et al., PLoS Comput. Biol. 5, e1000402 (2009)] and accounts for finite-size effects. We also discuss the relevance of our results to experiments in neuroscience, emphasizing the role of active dendrites in the enhancement of dynamic range and in gain control modulation.
Resumo:
Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-alpha, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this beta-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen.
Resumo:
DCs orchestrate immune responses contributing to the pattern of response developed. In cancer, DCs may play a dysfunctional role in the induction of CD4(+)CD25(+) Foxp3(+) Tregs, contributing to immune evasion. We show here that Mo-DCs from breast cancer patients show an altered phenotype and induce preferentially Tregs, a phenomenon that occurred regardless of DC maturation stimulus (sCD40L, cytokine cocktail, TNF-alpha, and LPS). The Mo-DCs of patients induced low proliferation of allogeneic CD3(+)CD25(neg)Foxp3(neg) cells, which after becoming CD25(+), suppressed mitogen-stimulated T cells. Contrastingly, Mo-DCs from healthy donors induced a stronger proliferative response, a low frequency of CD4(+)CD25(+)Foxp3(+) with no suppressive activity. Furthermore, healthy Mo-DCs induced higher levels of IFN-gamma, whereas the Mo-DCs of patients induced higher levels of bioactive TGF-beta 1 and IL-10 in cocultures with allogeneic T cells. Interestingly, TGF-beta 1 blocking with mAb in cocultures was not enough to completely revert the Mo-DCs of patients' bias toward Treg induction. Altogether, these findings should be considered in immunotherapeutic approaches for cancer based on Mo-DCs. J. Leukoc. Biol. 92: 673-682; 2012.
Resumo:
Abstract Background A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. Methods To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. Results It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. Conclusion Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy.
Resumo:
Abstract Background Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. Methods Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. Results Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. Conclusion Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.
Resumo:
CNPq, FAPESP (2009/54599-5 and 2012/10939-0).
Resumo:
Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4(+) and CD8(+) T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205(+) DC population with poly (I:C) opens perspectives for dengue vaccine development.
Resumo:
It is postulated that accumulation of malaria-infected Red Blood Cells (iRBCs) in the liver could be a parasitic escape mechanism against full destruction by the host immune system. Therefore, we evaluated the in vivo mechanism of this accumulation and its potential immunological consequences. A massive liver accumulation of P. c. chabaudi AS-iRBCs (PciRBCs) was observed by intravital microscopy along with an over expression of ICAM-1 on day 7 of the infection, as measured by qRT-PCR. Phenotypic changes were also observed in regulatory T cells (Tregs) and dendritic cells (DCs) that were isolated from infected livers, which indicate a functional role for Tregs in the regulation of the liver inflammatory immune response. In fact, the suppressive function of liver-Tregs was in vitro tested, which demonstrated the capacity of these cells to suppress naive T cell activation to the same extent as that observed for spleen-Tregs. On the other hand, it is already known that CD4+ T cells isolated from spleens of protozoan parasite-infected mice are refractory to proliferate in vivo. In our experiments, we observed a similar lack of in vitro proliferative capacity in liver CD4+ T cells that were isolated on day 7 of infection. It is also known that nitric oxide and IL-10 are partially involved in acute phase immunosuppression; we found high expression levels of IL-10 and iNOS mRNA in day 7-infected livers, which indicates a possible role for these molecules in the observed immune suppression. Taken together, these results indicate that malaria parasite accumulation within the liver could be an escape mechanism to avoid sterile immunity sponsored by a tolerogenic environment.
Resumo:
Activation of the platelet-activating factor receptor (PAFR) in macrophages is associated with suppressor phenotype. Here, we investigated the PAFR in murine dendritic cells (DC). Bone marrow-derived dendritic cells (BALB/c) were cultured with GM-CSF and maturation was induced by LPS. The PAFR antagonists (WEB2086, WEB2170, PCA4248) and the prostaglandin (PG) synthesis inhibitors (indomethacin, nimesulide and NS-398) were added before LPS. Mature and immature DCs expressed PAFR. LPS increased MHCII, CD40, CD80, CD86, CCR7 and induced IL-10, IL-12, COX-2 and PGE2 expression. IL-10, COX-2 and PGE2 levels were reduced by PAFR antagonists and increased by cPAF. The IL-10 production was independent of PGs. Mature DCs induced antigen-specific lymphocyte proliferation. PAFR antagonists or PG-synthesis inhibitors significantly increased lymphocyte proliferation. It is proposed that PAF has a central role in regulatory DC differentiation through potentiation of IL-10 and PGE2 production.
Resumo:
Exosomes (Exos) are secreted nanovesicles that contain membrane proteins and genetic material, which can be transferred between cells and contribute to their communication in the body. We show that Exos, obtained from mature human dendritic cells (DCs), are incorporated by tumour cells, which after Exos treatment, acquire the expression of HLA‐class I, HLA‐class II, CD86, CD11c, CD54 and CD18. This incorporation reaches its peak eight hours after treatment, can be observed in different cell tumour lines (SK‐BR‐3, U87 and K562) and could be a means to transform non‐immunogenic into immunogenic tumour cells. Interestingly, tetraspanins, which are expressed by the tumour cells, have their surface level decreased after Exo treatment. Furthermore, the intensity of Exo incorporation by the different tumour cell lines was proportional to their CD9 expression levels and pretreatment of Exos with anti‐CD9 decreased their incorporation (by SK‐BR‐3 cells). This modification of tumour cells by DC‐derived Exos may allow their use in new immunotherapeutic approaches to cancer. Furthermore, by showing the involvement of CD9 in this incorporation, we provide a possible selection criterion for tumours to be addressed by this strategy
Resumo:
NLRP3-inflammasome activation was evaluated in monocyte-derived dendritic cells (DC) obtained through IL-4 (IL4-DC) or IFN-α (IFN-DC) protocols and pulsed with chemically inactivated HIV-1. Inflammasome' genes expression and IL-1β secretion were compared in DC isolated from 15 healthy subjects (HC) and 10 HIV-1 infected individuals (HIV+). FINDINGS: Whether HIV was able to increased NLRP3-inflammasome genes expression and IL-1β secretion in IL4-DC from HC, the induction of inflammasome appeared significantly reduced in IFN-DC from HC, suggesting a different responsive state of IFN-DC compared to IL4-DC. No inflammasome activation was observed in IL4-DC as well as in IFN-DC derived from HIV + subjects, confirming previous findings on "unresponsive" state of DC derived from HIV + possibly due to chronic inflammatory state of these individuals. CONCLUSIONS: Our results showed that IFN-α differently modulates inflammasome expression during monocytes-DC in vitro differentiation. These findings could be of interest considering the on-going research about DC manipulation and therapeutic strategies for HIV + involving DC-based immune-vaccines.
Resumo:
OBJECTIVE: To investigate the effects of periodontal bacterial lysates on maturation and function of mature monocyte-derived dendritic cells (m-MDDCs) derived from individuals with chronic periodontitis (CP) or healthy periodontal tissue (HP). DESIGN: m-MDDCs derived from peripheral blood monocytes, cultured for 7 days in presence of interleukin (IL)-4 and granulocyte-macrophage colony stimulating factor (GM-CSF), were stimulated with lysates of Streptococcus sanguinis, Prevotella intermedia, Porphyromonas gingivalis, or Treponema denticola on day 4, and were then phenotyped. IL-10, IL-12 and IFN-gamma concentration in the supernatant of cultures were measured. RESULTS: Expression of HLA-DR was lower in bacterial-unstimulated mature m-MDDC from CP compared to HP (p=0.04), while expression of CD1a and CD123 were higher in CP. The expression pattern of HLA-DR, CD11c, CD123, and CD1a did not change on bacterial stimulation, regardless of the bacteria. Stimulation with P. intermedia upregulated CD80 and CD86 in CP cells (p≤0.05). Production of IL-12p70 by bacterial-unstimulated m-MDDCs was 5.8-fold greater in CP compared to HP. Bacterial stimulation further increased IL-12p70 production while decreasing IL-10. Significantly more IFN-gamma was produced in co-cultures of CP m-MDDCs than with HP m-MDDCs when cells were stimulated with P. intermedia (p=0.009). CONCLUSIONS: Bacterial-unstimulated m-MDDC from CP exhibited a more immature phenotype but a cytokine profile biased towards proinflammatory response; this pattern was maintained/exacerbated after bacterial stimulation. P. intermedia upregulated co-stimulatory molecules and IFN-gamma expression in CP m-MDDC. These events might contribute to periodontitis pathogenesis
Resumo:
INTRODUCTION: With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. METHODS: Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. RESULTS: CCR4-NOT transcription complex, subunit 1 (CNOT1) gene (16q21), showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075). CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74-624.66), and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85-3013.31), being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. DISCUSSION: CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP). The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP) has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. CONCLUSIONS: Being aware that our findings are exclusive to the 18 patients studied with a need for replication, and that the genetic variant of CNOT1 gene, localized at intron 3, has no known functional effect, we propose a novel potential candidate locus for the modulation of the response to the immune treatment, and open a discussion on the necessity to consider the host genome as another potential variant to be evaluated when designing an immune therapy study