957 resultados para Degrees of freedom (mechanics)
Resumo:
A three degrees of freedom industrial robot is controlled by applying PID self-tuning (PID/ST) controllers. This control is considered as a corrective term to a nominal value, centrally computed from an inaccurate and/ or simplified dynamic model. An identification scheme on an assumed linear plant describing the deviation from the desired trajectory is employed in order to tune the controller coefficients and thus accomplish a behaviour prescribed through a desired pole placement. A salient feature of our approach is the decentralized nature of the controllers producing the corrective term for each joint. This opens the way to practical implementation, as recent computing requirement calculations for similar set-ups have shown in the literature. Numerical results are presented.
Resumo:
In 'Avalanche', an object is lowered, players staying in contact throughout. Normally the task is easily accomplished. However, with larger groups counter-intuitive behaviours appear. The paper proposes a formal theory for the underlying causal mechanisms. The aim is to not only provide an explicit, testable hypothesis for the source of the observed modes of behaviour-but also to exemplify the contribution that formal theory building can make to understanding complex social phenomena. Mapping reveals the importance of geometry to the Avalanche game; each player has a pair of balancing loops, one involved in lowering the object, the other ensuring contact. For more players, sets of balancing loops interact and these can allow dominance by reinforcing loops, causing the system to chase upwards towards an ever-increasing goal. However, a series of other effects concerning human physiology and behaviour (HPB) is posited as playing a role. The hypothesis is therefore rigorously tested using simulation. For simplicity a 'One Degree of Freedom' case is examined, allowing all of the effects to be included whilst rendering the analysis more transparent. Formulation and experimentation with the model gives insight into the behaviours. Multi-dimensional rate/level analysis indicates that there is only a narrow region in which the system is able to move downwards. Model runs reproduce the single 'desired' mode of behaviour and all three of the observed 'problematic' ones. Sensitivity analysis gives further insight into the system's modes and their causes. Behaviour is seen to arise only when the geometric effects apply (number of players greater than degrees of freedom of object) in combination with a range of HPB effects. An analogy exists between the co-operative behaviour required here and various examples: conflicting strategic objectives in organizations; Prisoners' Dilemma and integrated bargaining situations. Additionally, the game may be relatable in more direct algebraic terms to situations involving companies in which the resulting behaviours are mediated by market regulations. Finally, comment is offered on the inadequacy of some forms of theory building and the case is made for formal theory building involving the use of models, analysis and plausible explanations to create deep understanding of social phenomena.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
We propose first, a simple task for the eliciting attitudes toward risky choice, the SGG lottery-panel task, which consists in a series of lotteries constructed to compensate riskier options with higher risk-return trade-offs. Using Principal Component Analysis technique, we show that the SGG lottery-panel task is capable of capturing two dimensions of individual risky decision making i.e. subjects’ average risk taking and their sensitivity towards variations in risk-return. From the results of a large experimental dataset, we confirm that the task systematically captures a number of regularities such as: A tendency to risk averse behavior (only around 10% of choices are compatible with risk neutrality); An attraction to certain payoffs compared to low risk lotteries, compatible with over-(under-) weighting of small (large) probabilities predicted in PT and; Gender differences, i.e. males being consistently less risk averse than females but both genders being similarly responsive to the increases in risk-premium. Another interesting result is that in hypothetical choices most individuals increase their risk taking responding to the increase in return to risk, as predicted by PT, while across panels with real rewards we see even more changes, but opposite to the expected pattern of riskier choices for higher risk-returns. Therefore, we conclude from our data that an “economic anomaly” emerges in the real reward choices opposite to the hypothetical choices. These findings are in line with Camerer's (1995) view that although in many domains, paid subjects probably do exert extra mental effort which improves their performance, choice over money gambles is not likely to be a domain in which effort will improve adherence to rational axioms (p. 635). Finally, we demonstrate that both dimensions of risk attitudes, average risk taking and sensitivity towards variations in the return to risk, are desirable not only to describe behavior under risk but also to explain behavior in other contexts, as illustrated by an example. In the second study, we propose three additional treatments intended to elicit risk attitudes under high stakes and mixed outcome (gains and losses) lotteries. Using a dataset obtained from a hypothetical implementation of the tasks we show that the new treatments are able to capture both dimensions of risk attitudes. This new dataset allows us to describe several regularities, both at the aggregate and within-subjects level. We find that in every treatment over 70% of choices show some degree of risk aversion and only between 0.6% and 15.3% of individuals are consistently risk neutral within the same treatment. We also confirm the existence of gender differences in the degree of risk taking, that is, in all treatments females prefer safer lotteries compared to males. Regarding our second dimension of risk attitudes we observe, in all treatments, an increase in risk taking in response to risk premium increases. Treatment comparisons reveal other regularities, such as a lower degree of risk taking in large stake treatments compared to low stake treatments and a lower degree of risk taking when losses are incorporated into the large stake lotteries. Results that are compatible with previous findings in the literature, for stake size effects (e.g., Binswanger, 1980; Antoni Bosch-Domènech & Silvestre, 1999; Hogarth & Einhorn, 1990; Holt & Laury, 2002; Kachelmeier & Shehata, 1992; Kühberger et al., 1999; B. J. Weber & Chapman, 2005; Wik et al., 2007) and domain effect (e.g., Brooks and Zank, 2005, Schoemaker, 1990, Wik et al., 2007). Whereas for small stake treatments, we find that the effect of incorporating losses into the outcomes is not so clear. At the aggregate level an increase in risk taking is observed, but also more dispersion in the choices, whilst at the within-subjects level the effect weakens. Finally, regarding responses to risk premium, we find that compared to only gains treatments sensitivity is lower in the mixed lotteries treatments (SL and LL). In general sensitivity to risk-return is more affected by the domain than the stake size. After having described the properties of risk attitudes as captured by the SGG risk elicitation task and its three new versions, it is important to recall that the danger of using unidimensional descriptions of risk attitudes goes beyond the incompatibility with modern economic theories like PT, CPT etc., all of which call for tests with multiple degrees of freedom. Being faithful to this recommendation, the contribution of this essay is an empirically and endogenously determined bi-dimensional specification of risk attitudes, useful to describe behavior under uncertainty and to explain behavior in other contexts. Hopefully, this will contribute to create large datasets containing a multidimensional description of individual risk attitudes, while at the same time allowing for a robust context, compatible with present and even future more complex descriptions of human attitudes towards risk.
Resumo:
We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a delta-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on delta. We apply the obtained estimates to show exponential convergence with rate O(exp(−b square root N)), N being the number of degrees of freedom and b>0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(−b cubic root N )), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.
Resumo:
Visual motion cues play an important role in animal and humans locomotion without the need to extract actual ego-motion information. This paper demonstrates a method for estimating the visual motion parameters, namely the Time-To-Contact (TTC), Focus of Expansion (FOE), and image angular velocities, from a sparse optical flow estimation registered from a downward looking camera. The presented method is capable of estimating the visual motion parameters in a complicated 6 degrees of freedom motion and in real time with suitable accuracy for mobile robots visual navigation.