903 resultados para Deformable Mirror
Resumo:
This article focuses on several key philosophical themes in the criticism of Sakaguchi Ango (1906–1955), one of postwar Japan’s most influential and controversial writers. Associated with the underground Kasutori culture as well as the Burai-ha of Tamura Taijirō (1911–1983), Oda Sakunosuke (1913–1947) and Dazai Osamu (1909–1948), Ango gained fame for two provocative essays on the theme of daraku or “decadence”—Darakuron and Zoku darakuron—pubished in 1946, in the wake of Japan’s traumatic defeat and the beginnings of the Allied Occupation. Less well-known is the fact that Ango spent his student years studying classical Buddhist texts in Sanskrit, Pali and Tibetan, and that he at at one time aspired to the priesthood. The article analyses the concept of daraku in the two essays noted above, particularly as it relates to Ango’s vision of a refashioned morality based on an interpretation of human subjectivity vis-à-vis the themes of illusion and disillusion. It argues that, despite the radical and modernist flavor of Ango’s essays, his “decadence” is best understood in terms of Mahāyāna and Zen Buddhist concepts. Moreover, when the two essays on decadence are read in tandem with Ango’s wartime essay on Japanese culture (Nihon bunka shikan, 1942), they form the foundation for a “postmetaphysical Buddhist critique of culture,” one that is pragmatic, humanistic, and non-reductively physicalist.
Resumo:
Oral health (OH) is indivisible from general health. Several studies have established the link between morbi-mortality, especially cardiovascular, and bad OH, particularly in the case of edentation. Regrettably, part of the population choses dental care renunciation for financial reasons. The primary care physician (PCP), as the health professionnal with the most frequent and intense contacts with the patients, plays an important role to reinforce prevention measures, OH maintenance and to detect oral pathologies. To fulfill this mission, he has to be trained to endo-buccal examination. Furthermore, both the PCP and the dentist have to proactively build an interprofessional approach to promote patients' OH.
Resumo:
Direct imaging of extra-solar planets in the visible and infrared region has generated great interest among scientists and the general public as well. However, this is a challenging problem. Diffculties of detecting a planet (faint source) are caused, mostly, by two factors: sidelobes caused by starlight diffraction from the edge of the pupil and the randomly scattered starlight caused by the phase errors from the imperfections in the optical system. While the latter diffculty can be corrected by high density active deformable mirrors with advanced phase sensing and control technology, the optimized strategy for suppressing the diffraction sidelobes is still an open question. In this thesis, I present a new approach to the sidelobe reduction problem: pupil phase apodization. It is based on a discovery that an anti-symmetric spatial phase modulation pattern imposed over a pupil or a relay plane causes diffracted starlight suppression sufficient for imaging of extra-solar planets. Numerical simulations with specific square pupil (side D) phase functions, such as ... demonstrate annulling in at least one quadrant of the diffraction plane to the contrast level of better than 10^12 with an inner working angle down to 3.5L/D (with a = 3 and e = 10^3). Furthermore, our computer experiments show that phase apodization remains effective throughout a broad spectrum (60% of the central wavelength) covering the entire visible light range. In addition to the specific phase functions that can yield deep sidelobe reduction on one quadrant, we also found that a modified Gerchberg-Saxton algorithm can help to find small sized (101 x 101 element) discrete phase functions if regional sidelobe reduction is desired. Our simulation shows that a 101x101 segmented but gapless active mirror can also generate a dark region with Inner Working Distance about 2.8L/D in one quadrant. Phase-only modulation has the additional appeal of potential implementation via active segmented or deformable mirrors, thereby combining compensation of random phase aberrations and diffraction halo removal in a single optical element.
Resumo:
Mirror masked words are embedded into a context that makes them appear as senseless patterns or as strings of unfamiliar letters. Thus, mirror masked words can be shown for several hundreds of milliseconds without being recognised as words. We sought to further investigate effects of nonsconscious reading by monitoring event-related brain potentials (ERPs) while participants observed mirror masked letter strings. ERPs were recorded while participants observed mirror masked words and nonwords. Data of 15 participants was segmented into periods of quasi-stable field topography (microstates). Microstates for masked words and nonwords were compared using randomization tests, statistical parametric scalp maps and Low Resolution Electromagnetic Tomography (LORETA). ERPs to masked words and nonwords showed significant topographic differences between 136 and 256 ms, indicating that stimuli were nonconsciously discriminated. A LORETA model localised sources of activation discriminating between masked words and nonwords in left operculum, the right superior parietal lobe and right superior temporal gyrus indicating higher current density for nonwords than for words in these areas. ERPs of mirror masked stimuli can indicate unconscious discrimination even in cases where behavioural priming is unreliable. This approach might be useful for investigating differences in early, nonconscious stages of word perception.
Resumo:
This paper addresses the issue of matching statistical and non-rigid shapes, and introduces an Expectation Conditional Maximization-based deformable shape registration (ECM-DSR) algorithm. Similar to previous works, we cast the statistical and non-rigid shape registration problem into a missing data framework and handle the unknown correspondences with Gaussian Mixture Models (GMM). The registration problem is then solved by fitting the GMM centroids to the data. But unlike previous works where equal isotropic covariances are used, our new algorithm uses heteroscedastic covariances whose values are iteratively estimated from the data. A previously introduced virtual observation concept is adopted here to simplify the estimation of the registration parameters. Based on this concept, we derive closed-form solutions to estimate parameters for statistical or non-rigid shape registrations in each iteration. Our experiments conducted on synthesized and real data demonstrate that the ECM-DSR algorithm has various advantages over existing algorithms.