880 resultados para Data modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report demonstrates the development of: (a) object-oriented representation to provide 3D interactive environment using data provided by Woods Bagot; (b) establishing basis of agent technology for mining building maintenance data, and (C) 3D interaction in virtual environments using object-oriented representation. Applying data mining over industry maintenance database has been demonstrated in the previous report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

“SOH see significant benefit in digitising its drawings and operation and maintenance manuals. Since SOH do not currently have digital models of the Opera House structure or other components, there is an opportunity for this national case study to promote the application of Digital Facility Modelling using standardized Building Information Models (BIM)”. The digital modelling element of this project examined the potential of building information models for Facility Management focusing on the following areas: • The re-usability of building information for FM purposes • BIM as an Integrated information model for facility management • Extendibility of the BIM to cope with business specific requirements • Commercial facility management software using standardised building information models • The ability to add (organisation specific) intelligence to the model • A roadmap for SOH to adopt BIM for FM The project has established that BIM – building information modelling - is an appropriate and potentially beneficial technology for the storage of integrated building, maintenance and management data for SOH. Based on the attributes of a BIM, several advantages can be envisioned: consistency in the data, intelligence in the model, multiple representations, source of information for intelligent programs and intelligent queries. The IFC – open building exchange standard – specification provides comprehensive support for asset and facility management functions, and offers new management, collaboration and procurement relationships based on sharing of intelligent building data. The major advantages of using an open standard are: information can be read and manipulated by any compliant software, reduced user “lock in” to proprietary solutions, third party software can be the “best of breed” to suit the process and scope at hand, standardised BIM solutions consider the wider implications of information exchange outside the scope of any particular vendor, information can be archived as ASCII files for archival purposes, and data quality can be enhanced as the now single source of users’ information has improved accuracy, correctness, currency, completeness and relevance. SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. There have been remarkably few technical difficulties in converting the House’s existing conventions and standards to the new model based environment. This demonstrates that the IFC model represents world practice for building data representation and management (see Sydney Opera House – FM Exemplar Project Report Number 2005-001-C-3, Open Specification for BIM: Sydney Opera House Case Study). Availability of FM applications based on BIM is in its infancy but focussed systems are already in operation internationally and show excellent prospects for implementation systems at SOH. In addition to the generic benefits of standardised BIM described above, the following FM specific advantages can be expected from this new integrated facilities management environment: faster and more effective processes, controlled whole life costs and environmental data, better customer service, common operational picture for current and strategic planning, visual decision-making and a total ownership cost model. Tests with partial BIM data – provided by several of SOH’s current consultants – show that the creation of a SOH complete model is realistic, but subject to resolution of compliance and detailed functional support by participating software applications. The showcase has demonstrated successfully that IFC based exchange is possible with several common BIM based applications through the creation of a new partial model of the building. Data exchanged has been geometrically accurate (the SOH building structure represents some of the most complex building elements) and supports rich information describing the types of objects, with their properties and relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Digital Modelling Report incorporates the previous research completed for the FM Exemplar Project utilising the Sydney Opera House as a case study. The research has demonstrated significant benefits in digitising design documentation and operational and maintenance manuals. Since Sydney Opera House do not have digital models of its structure, there is an opportunity to investigate the application of Digital Facility Modelling using standardised Building Information Models (BIM). The digital modelling research project has examined the potential of standardised building information models to develop a digital facility model supporting facilities management (FM). The focus of this investigation was on the following areas: • The re-usability of standardised building information models (BIM) for FM purposes. • The potential of BIM as an information framework acting as integrator for various FM data sources. • The extendibility and flexibility of the BIM to cope with business specific data and requirements. • Commercial FM software using standardised building information models. • The ability to add (organisation-specific) intelligence to the model. • A roadmap for Sydney Opera House to adopt BIM for FM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Facility managers have to acquire, integrate, edit and update diverse facility information ranging from building elements & fabric data, operational costs, contract types, room allocation, logistics, maintenance, etc. With the advent of standardized Building Information Models (BIM) such as the Industry Foundation Classes (IFC) new opportunities are available for Facility Managers to manage their FM data. The usage of IFC supports data interoperability between different software systems including the use of operational data for facility management systems. Besides the re-use of building data, the Building Information Model can be used as an information framework for storing and retrieving FM related data. Currently several BIM driven FM systems are available including IFC compliant ones. These systems have the potential to not only manage primary data more effectively but also to offer practical systems for detailed monitoring, and analysis of facility performance that can underpin innovative and more cost effective management of complex facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenges of maintaining a building such as the Sydney Opera House are immense and are dependent upon a vast array of information. The value of information can be enhanced by its currency, accessibility and the ability to correlate data sets (integration of information sources). A building information model correlated to various information sources related to the facility is used as definition for a digital facility model. Such a digital facility model would give transparent and an integrated access to an array of datasets and obviously would support Facility Management processes. In order to construct such a digital facility model, two state-of-the-art Information and Communication technologies are considered: an internationally standardized building information model called the Industry Foundation Classes (IFC) and a variety of advanced communication and integration technologies often referred to as the Semantic Web such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL). This paper reports on some technical aspects for developing a digital facility model focusing on Sydney Opera House. The proposed digital facility model enables IFC data to participate in an ontology driven, service-oriented software environment. A proof-of-concept prototype has been developed demonstrating the usability of IFC information to collaborate with Sydney Opera House’s specific data sources using semantic web ontologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building Information Modelling (BIM) is an information technology [IT] enabled approach to managing design data in the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry. BIM enables improved interdisciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. Despite the apparent benefits the adoption of BIM in practice has been slow. Workshops with industry focus groups were conducted to identify the industry needs, concerns and expectations from participants who had implemented BIM or were BIM “ready”. Factors inhibiting BIM adoption include lack of training, low business incentives, perception of lack of rewards, technological concerns, industry fragmentation related to uneven ICT adoption practices, contractual matters and resistance to changing current work practice. Successful BIM usage depends on collective adoption of BIM across the different disciplines and support by the client. The relationship of current work practices to future BIM scenarios was identified as an important strategy as the participants believed that BIM cannot be efficiently used with traditional practices and methods. The key to successful implementation is to explore the extent to which current work practices must change. Currently there is a perception that all work practices and processes must adopt and change for effective usage of BIM. It is acknowledged that new roles and responsibilities are emerging and that different parties will lead BIM on different projects. A contingency based approach to the problem of implementation was taken which relies upon integration of BIM project champion, procurement strategy, team capability analysis, commercial software availability/applicability and phase decision making and event analysis. Organizations need to understand: (a) their own work processes and requirements; (b) the range of BIM applications available in the market and their capabilities (c) the potential benefits of different BIM applications and their roles in different phases of the project lifecycle, and (d) collective supply chain adoption capabilities. A framework is proposed to support organizations selection of BIM usage strategies that meet their project requirements. Case studies are being conducted to develop the framework. The results of the preliminary design management case study is presented for contractor led BIM specific to the design and construct procurement strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building Information Modelling (BIM) is an IT enabled technology that allows storage, management, sharing, access, update and use of all the data relevant to a project through out the project life-cycle in the form of a data repository. BIM enables improved inter-disciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. While the technology itself may not be new, and similar approaches have been in use in some other sectors like Aircraft and Automobile industry for well over a decade now, the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry is still to catch up with them in its ability to exploit the benefits of the IT revolution. Though the potential benefits of the technology in terms of knowledge sharing, project management, project co-ordination and collaboration are near to obvious, the adoption rate has been rather lethargic, inspite of some well directed efforts and availability of supporting commercial tools. Since the technology itself has been well tested over the years in some other domains the plausible causes must be rooted well beyond the explanation of the ‘Bell Curve of innovation adoption’. This paper discusses the preliminary findings of an ongoing research project funded by the Cooperative Research Centre for Construction Innovation (CRC-CI) which aims to identify these gaps and come up with specifications and guidelines to enable greater adoption of the BIM approach in practice. A detailed literature review is conducted that looks at some of the similar research reported in the recent years. A desktop audit of some of the existing commercial tools that support BIM application has been conducted to identify the technological issues and concerns, and a workshop was organized with industry partners and various players in the AEC industry for needs analysis, expectations and feedback on the possible deterrents and inhibitions surrounding the BIM adoption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents one approach to addressing the important issue of interdisciplinarity in the primary school mathematics curriculum, namely, through realistic mathematical modelling problems. Such problems draw upon other disciplines for their contexts and data. The article initially considers the nature of modelling with complex systems and discusses how such experiences differ from existing problem-solving activities in the primary mathematics curriculum. Principles for designing interdisciplinary modelling problems are then addressed, with reference to two mathematical modelling problems— one based in the scientific domain and the other in the literary domain. Examples of the models children have created in solving these problems follow. A reflection on the differences in the diversity and sophistication of these models raises issues regarding the design of interdisciplinary modelling problems. The article concludes with suggested opportunities for generating multidisciplinary projects within the regular mathematics curriculum.