995 resultados para DNA Checkerboard hybridization
Resumo:
AIMS: (i) To assess the pattern of early bacterial colonization on titanium oral implants after installation, at 12 weeks and at 12 months, (ii) to compare the microbiota at submucosal implant sites and adjacent subgingival tooth sites and (iii) to assess whether or not early colonization was predictive of 12-month colonization patterns. MATERIAL AND METHODS: Submucosal/subgingival plaque samples from 17 titanium oral implants and adjacent teeth were analyzed by checkerboard DNA-DNA hybridization 30 min, 12 weeks and 12 months after implant installation. RESULTS: At 12 months, none of the inserted implants had been lost or presented with signs of peri-implantitis. The distribution of sites at implants and teeth with bleeding on probing varied between 2% and 11%. Probing pocket depths < or =3 mm were found at 75% of implant sites. At 12 months, the sum of the bacterial counts of 40 species was statistically significantly higher at tooth compared with implant sites (mean difference: 34.4 x 10(5), 95% confidence interval -0.4 to 69.4, P<0.05). At 12 months, higher individual bacterial counts at tooth sites were found for 7/40 species compared with implant sites. Detection or lack of detection of Staphylococcus aureus at implant sites at 12 weeks resulted in the highest positive (e.g. 80%) and negative (e.g. 90%) predictive values, respectively. Between 12 weeks and 12 months, the prevalence of Tannerella forsythia increased statistically significantly at implant sites (P<0.05). Lack of detection of Porphyromonas gingivalis at 12 weeks yielded a negative predictive value of 93.1% of this microorganism being undetectable at implant sites at 12 months. CONCLUSIONS: Within the limits of this study, the findings showed (i) a few differences in the prevalence of bacterial species between implant and adjacent tooth sites at 12 months and (ii) high positive and negative predictive values for selected bacterial species.
Resumo:
Changes in the levels of female sex hormones during the menstrual cycle may cause cyclic differences in subgingival bacterial colonization patterns. The purpose of the present study was to test the hypothesis that hormonal changes in the menstrual cycle cause changes in the oral microbiota. METHODS: Bacterial plaque samples were collected in 20 systemically and periodontally healthy women using no hormonal contraceptives (test group) over a period of 6 weeks. Twenty age-matched systemically and periodontally healthy men were assigned to the control group. Samples were processed by checkerboard DNA-DNA hybridization assay, and 74 species were analyzed. RESULTS: No cyclic pattern of bacterial colonization was identified for any of the 74 species studied in women not using hormonal contraceptives. Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) (Y4) was common at the beginning of menstruation (mean: 32%) and increased during the following 2 weeks (36%) in women (P <0.05). No cyclic differences in bacterial presence were found among the men (P values varied between 0.14 and 0.98). Men presented with significantly higher bacterial counts for 40 of 74 species (P <0.001), including Staphylococcus aureus and Pseudomonas aeruginosa but not Porphyromonas gingivalis (P = 0.15) or Tannerella forsythia (previously T. forsythensis) (P = 0.42). CONCLUSIONS: During a menstruation period, cyclic variation in the subgingival microbiota of periodontally healthy women of child-bearing age who were not using oral hormonal contraceptives could not be confirmed. Male control subjects presented with higher levels of many species but also without a cyclic pattern.
Resumo:
AIMS: To assess the impact of different implant systems on the clinical conditions and the microbiota at implants, and whether the presence of bacteria at tooth sites was predictive of the presence at implant sites. MATERIALS AND METHODS: Subjects with either AstraTech or Brånemark in function for 7 years were enrolled. Sub-gingival bacterial samples at tooth and implant sites were collected with sterile endodontic paper points, and analyzed by the checkerboard DNA-DNA hybridization method (40 species). RESULTS: Fifty-four subjects, 27 supplied with AstraTech (n=132 implants) and 27 with Brånemark (n=102) implants, were studied. Test tooth sites had significantly less evidence of bleeding on probing (P<0.001) and presence of plaque (P<0.001) than implant test sites. Implant sites presented with deeper probing pocket depth than tooth sites (mean difference: 1.1 mm, standard error of differences: 0.08, 95% confidence intervals (CI): 0.9-1.3, P<0.001). Tannerella forsythia (P<0.05), Capnocytophaga sputigena (P<0.05), Actinomyces israelii (P<0.05) and Lactobacillus acidophilus (P<0.05) were found at higher levels at tooth surfaces. No differences in bacterial load for any species were found between the two implant systems. The odds of being present/absent at tooth and implants sites were only significant for Staphylococcus aureus [odds ratio (OR): 5.2 : 1, 95% CI: 1.4-18.9, P<0.01]. CONCLUSIONS: After 7 years in function, implants presented with deeper probing depths than teeth. S. aureus was commonly present at both teeth and implants sites. S. aureus at tooth sites was predictive of also being present at implant sites.
Resumo:
BACKGROUND: Information on the subgingival microbiota in parous women is limited. The present study assessed 74 bacterial species at periodontal sites. METHODS: Subgingival bacterial plaque was collected from women > or =6 months after delivery. Bacteria were assessed by the checkerboard DNA-DNA hybridization method. Gingivitis was defined as > or =20% of sites with bleeding on probing (BOP), and periodontitis was defined as radiographic evidence of bone loss and probing depths > or =5.0 mm. RESULTS: A total of 197 women (mean age: 29.4 +/- 6.8 years; range: 18 to 46 years) were included in the study. Gingivitis was identified in 82 of 138 subjects without evidence of periodontitis (59.4%). Periodontitis was found in 59 women (32%). Higher bacterial levels in subjects with gingivitis compared to those without evidence of gingivitis were observed for Actinomyces neuii, Bifidobacterium bifidum, Corynebacterium pseudogenitalis, Porphyromonas endodontalis, Prevotella bivia, and Pseudomonas aeruginosa (P <0.001 for each). Higher bacterial levels in subjects with periodontitis compared to those without periodontitis (BOP not accounted for) were found for 32 of 79 species (P <0.001) including Lactobacillus iners, Haemophilus influenzae, Porphyromonas gingivalis, Tannerella forsythia (previously T. forsythensis), Prevotella bivia, P. aeruginosa, and Staphylococcus aureus. Binary univariate logistic regression analysis identified that P. aeruginosa (P <0.001) and T. forsythia (P <0.05) were independently predictive of periodontal status. The odds ratio of having P. aeruginosa at levels > or =1 x 10(5) in the sample and periodontitis was 3.1 (95% confidence interval: 1.6 to 5.9; P <0.001). CONCLUSION: In addition to P. gingivalis and T. forsythia, a diverse microbiota, including P. aeruginosa, P. endodontalis, P. bivia, and S. aureus, can be found in subgingival plaque samples from women of child-bearing age with periodontitis.
Resumo:
BACKGROUND: As for Cystic Fibrosis (CF) and many other hereditary diseases there is still a lack in understanding the relationship between genetic (e.g. allelic) and phenotypic diversity. Therefore methods which allow fine quantification of allelic proportions of mRNA transcripts are of high importance. METHODS: We used either genomic DNA (gDNA) or total RNA extracted from nasal cells as starting nucleic acid template for our assay. The subjects included in this study were 9 CF patients compound heterozygous for the F508del mutation and each one F508del homozygous and one wild type homozygous respectively. We established a novel ligation based quantification method which allows fine quantification of the allelic proportions of ss and ds CFTR cDNA. To verify reliability and accuracy of this novel assay we compared it with semiquantitative fluorescent PCR (SQF-PCR). RESULTS: We established a novel assay for allele specific quantification of gene expression which combines the benefits of the specificity of the ligation reaction and the accuracy of quantitative real-time PCR. The comparison with SQF-PCR clearly demonstrates that LASQ allows fine quantification of allelic proportions. CONCLUSION: This assay represents an alternative to other fine quantitative methods such as ARMS PCR and Pyrosequencing.
Resumo:
BACKGROUND: We investigated clinical and subgingival microbiologic changes during pregnancy in 20 consecutive pregnant women > or =18 years not receiving dental care. METHODS: Bacterial samples from weeks 12, 28, and 36 of pregnancy and at 4 to 6 weeks postpartum were processed for 37 species by checkerboard DNA-DNA hybridization. Clinical periodontal data were collected at week 12 and at 4 to 6 weeks postpartum, and bleeding on probing (BOP) was recorded at sites sampled at the four time points. RESULTS: The mean BOP at week 12 and postpartum was 40.1% +/- 18.2% and 27.4% +/- 12.5%, respectively. The corresponding mean BOP at microbiologic test sites was 15% (week 12) and 21% (postpartum; not statistically significant). Total bacterial counts decreased between week 12 and postpartum (P <0.01). Increased bacterial counts over time were found for Neisseria mucosa (P <0.001). Lower counts (P <0.001) were found for Capnocytophaga ochracea, Capnocytophaga sputigena, Eubacterium saburreum, Fusobacterium nucleatum naviforme, Fusobacterium nucleatum polymorphum, Leptotrichia buccalis, Parvimonas micra (previously Peptostreptococcus micros or Micromonas micros), Prevotella intermedia, Prevotella melaninogenica, Staphylococcus aureus, Streptococcus anginosus, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus sanguinis, Selenomonas noxia, and Veillonella parvula. No changes occurred between weeks 12 and 28 of pregnancy. Counts of Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans), Porphyromonas gingivalis, Tannerella forsythia (previously T. forsythensis), and Treponema denticola did not change. Counts of P. gingivalis and T. forsythia at week 12 were associated with gingivitis (P <0.001). CONCLUSIONS: Subgingival levels of bacteria associated with periodontitis did not change. P. gingivalis and T. forsythia counts were associated with BOP at week 12. A decrease was found in 17 of 37 species from week 12 to postpartum. Only counts of N. mucosa increased.
Resumo:
BACKGROUND: The objective of this study was to assess the oral microbiota and clinical data in subjects without access to traditional oral hygiene methods and who ate a diet available in the Stone Age. METHODS: Ten subjects living in an environment replicating the Stone Age for 4 weeks were enrolled in this study. Bleeding on probing (BOP), gingival and plaque indices, and probing depth (PD) were assessed at baseline and at 4 weeks. Microbiologic samples were collected at the mesio-buccal subgingival aspects of all teeth and from the dorsum of the tongue and were processed by checkerboard DNA-DNA hybridization methods. RESULTS: No subject had periodontitis. Mean BOP decreased from 34.8% to 12.6% (P <0.001). Mean gingival index scores changed from 0.38 to 0.43 (not statistically significant) and mean plaque scores increased from 0.68 to 1.47 (P <0.001). PD at sites of subgingival sampling decreased (mean difference: 0.2 mm; P <0.001). At week 4, the total bacterial count was higher (P <0.001) for 24 of 74 species, including Bacteroides ureolyticus, Eikenella corrodens, Lactobacillus acidophilus, Capnocytophaga ochracea, Escherichia coli, Fusobacterium nucleatum naviforme, Haemophilus influenzae, Helicobacter pylori, Porphyromonas endodontalis, Staphylococcus aureus (two strains), Streptococcus agalactiae, Streptococcus anginosis, and Streptococcus mitis. Bacterial counts from tongue samples were higher at baseline (P <0.001) for 20 species, including Tannerella forsythia (previously T. forsythensis), Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans; serotype a), and Streptococcus spp. CONCLUSIONS: The experimental gingivitis protocol is not applicable if the diet (e.g., Stone Age) does not include refined sugars. Although plaque levels increased, BOP and PD decreased. Subgingival bacterial counts increased for several species not linked to periodontitis, whereas tongue bacterial samples decreased during the study period.
Resumo:
OBJECTIVES This study aims to assess the effects of rinsing with zinc- and chlorhexidine-containing mouth rinse with or without adjunct tongue scraping on volatile sulfur compounds (VSCs) in breath air, and the microbiota at the dorsum of the tongue. MATERIAL AND METHODS A randomized single-masked controlled clinical trial with a cross-over study design over 14 days including 21 subjects was performed. Bacterial samples from the dorsum of the tongue were assayed by checkerboard DNA-DNA hybridization. RESULTS No halitosis (identified by VSC assessments) at day 14 was identified in 12/21 subjects with active rinse alone, in 10/21 with adjunct use of tongue scraper, in 1/21 for negative control rinse alone, and in 3/21 in the control and tongue scraping sequence. At day 14, significantly lower counts were identified only in the active rinse sequence (p < 0.001) for 15/78 species including, Fusobacterium sp., Porphyromonas gingivalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Tannerella forsythia. A decrease in bacteria from baseline to day 14 was found in successfully treated subjects for 9/74 species including: P. gingivalis, Prevotella melaninogenica, S. aureus, and Treponema denticola. Baseline VSC scores were correlated with several bacterial species. The use of a tongue scraper combined with active rinse did not change the levels of VSC compared to rinsing alone. CONCLUSIONS VSC scores were not associated with bacterial counts in samples taken from the dorsum of the tongue. The active rinse alone containing zinc and chlorhexidine had effects on intra-oral halitosis and reduced bacterial counts of species associated with malodor. Tongue scraping provided no beneficial effects on the microbiota studied. CLINICAL RELEVANCE Periodontally healthy subjects with intra-oral halitosis benefit from daily rinsing with zinc- and chlorhexidine-containing mouth rinse.
Resumo:
PURPOSE The purpose of this study was to document the long-term outcome of Brånemark implants installed in augmented maxillary bone and to identify parameters that are associated with peri-implant bone level. MATERIAL AND METHODS Patients of a periodontal practice who had been referred to a maxillofacial surgeon for iliac crest bone grafting in the atrophic maxilla were retrospectively recruited. Five months following grafting, they received 7-8 turned Brånemark implants. Following submerged healing of another 5 months, implants were uncovered and restorative procedures for fixed rehabilitation were initiated 2-3 months thereafter. The primary outcome variable was bone level defined as the distance from the implant-abutment interface to the first visible bone-to-implant contact. Secondary outcome variables included plaque index, bleeding index, probing depth, and levels of 40 species in subgingival plaque samples as identified by means of checkerboard DNA-DNA hybridization. RESULTS Nine out of 16 patients (eight females, one male; mean age 59) with 71 implants agreed to come in for evaluation after on average 9 years (SD 4; range 3-13) of function. One implant was deemed mobile at the time of inspection. Clinical conditions were acceptable with 11% of the implants showing pockets ≥ 5 mm. Periodontopathogens were encountered frequently and in high numbers. Clinical parameters and bacterial levels were highly patient dependent. The mean bone level was 2.30 mm (SD 1.53; range 0.00-6.95), with 23% of the implants demonstrating advanced resorption (bone level > 3 mm). Regression analysis showed a significant association of the patient (p < .001) and plaque index (p = .007) with bone level. CONCLUSIONS The long-term outcome of Brånemark implants installed in iliac crest-augmented maxillary bone is acceptable; however, advanced peri-implant bone loss is rather common and indicative of graft resorption. This phenomenon is patient dependent and seems also associated with oral hygiene.
Resumo:
OBJECTIVES The aim of this study was to assess gingival fluid (GCF) cytokine messenger RNA (mRNA) levels, subgingival bacteria, and clinical periodontal conditions during a normal pregnancy to postpartum. MATERIALS AND METHODS Subgingival bacterial samples were analyzed with the checkerboard DNA-DNA hybridization method. GCF samples were assessed with real-time PCR including five proinflammatory cytokines and secretory leukocyte protease inhibitor. RESULTS Nineteen pregnant women with a mean age of 32 years (S.D. ± 4 years, range 26-42) participated in the study. Full-mouth bleeding scores (BOP) decreased from an average of 41.2% (S.D. ± 18.6%) at the 12th week of pregnancy to 26.6% (S.D. ± 14.4%) at the 4-6 weeks postpartum (p < 0.001). Between week 12 and 4-6 weeks postpartum, the mean probing pocket depth changed from 2.4 mm (S.D. ± 0.4) to 2.3 mm (S.D. ± 0.3) (p = 0.34). Higher counts of Eubacterium saburreum, Parvimonas micra, Selenomonas noxia, and Staphylococcus aureus were found at week 12 of pregnancy than at the 4-6 weeks postpartum examinations (p < 0.001). During and after pregnancy, statistically significant correlations between BOP scores and bacterial counts were observed. BOP scores and GCF levels of selected cytokines were not related to each other and no differences in GCF levels of the cytokines were observed between samples from the 12th week of pregnancy to 4-6 weeks postpartum. Decreasing postpartum counts of Porphyromonas endodontalis and Pseudomonas aeruginosa were associated with decreasing levels of Il-8 and Il-1β. CONCLUSIONS BOP decreased after pregnancy without any active periodontal therapy. Associations between bacterial counts and cytokine levels varied greatly in pregnant women with gingivitis and a normal pregnancy outcome. Postpartum associations between GCF cytokines and bacterial counts were more consistent. CLINICAL RELEVANCE Combined assessments of gingival fluid cytokines and subgingival bacteria may provide important information on host response.
Resumo:
OBJECTIVES We assessed if adjunct administration of piperacillin/tazobactam added clinical and microbiological treatment benefits. MATERIALS AND METHODS Thirty-six subjects (mean age 52.1 years (SD ± 10.3)) (NS by group) with chronic periodontitis were randomly enrolled receiving subgingival debridement and the local administration of piperacillin/tazobactam (test group) or debridement alone (control group). Bleeding on probing (BOP), probing pocket depth (PPD), and microbiological counts of 74 species were studied by checkerboard DNA-DNA hybridization up to month 6 after treatment. RESULTS Mean PPD changes between baseline and month 6 in the test and control groups were 1.5 and 1.8 mm, respectively (NS between groups). BOP in both groups decreased from about 80 to 40 %. At 4 and 12 weeks, lower counts of the following bacteria were found in the test group (site level): Fusobacterium species, Parvimonas micra, Pseudomonas aeruginosa, Staphylococcus aureus, Tannerella forsythia, Treponema denticola, and a composite load of nine pathogens (p < 0.001). At week 26, subjects receiving local antibiotics had a lower prevalence at tested sites for Fusobacterium nucleatum sp. polymorphum, Fusobacterium periodonticum, P. micra, and T. denticola. CONCLUSIONS At 26 weeks, treatment with or without piperacillin/tazobactam resulted in similar BOP and PPD improvements. At week 26 and at the subject level, the prevalence of 4/74 pathogens was found at lower counts in the group receiving local antibiotics. CLINICAL RELEVANCE Administration of piperacillin/tazobactam reduces the prevalence of Fusobacterium, P. micra, and T. denticola to a greater extent than debridement alone but with no short-term differences in PPD or BOP.
Resumo:
Equine penile papillomas, in situ carcinomas, and invasive carcinomas are hypothesized to belong to a continuum of papillomavirus-induced diseases. The former ones clinically present as small grey papules, while the latter 2 lesions are more hyperplasic or alternatively ulcerated. To test the hypothesis that these lesions are papillomavirus-induced, samples of 24 horses with characteristic clinical and histologic findings of penile papillomas or in situ or invasive squamous cell carcinomas were collected. As controls, 11 horses with various lesions--namely, Balanoposthitis (6 cases), melanoma (3 cases), follicular cyst (1 case), and amyloidosis (1 case)--were included. DNA was extracted and polymerase chain reaction applied to amplify papillomavirus DNA. The respective primers were designed to amplify DNA of the recently discovered equine papillomavirus EcPV2. All tested papilloma and squamous cell carcinoma samples were found to contain DNA of either of 2 previously published EcPV2 variants. Among the other samples 6 of 11 were found to contain EcPV2 DNA. To further support the findings and to determine where the papillomavirus DNA was located within the lesions, an in situ hybridization for the detection of EcPV2 DNA was established. The samples tested by this technique were found to clearly contain papillomavirus nucleic acid concentrated in the nucleus of the koilocytes. The findings of this study support previous data and the hypothesis that papillomaviruses induce the described penile lesions in horses.
Resumo:
Agrobacterium tumefaciens translocates T-DNA through a polar VirB/D4 type IV secretion (T4S) system. VirC1, a factor required for efficient T-DNA transfer, bears a deviant Walker A and other sequence motifs characteristic of ParA and MinD ATPases. Here, we show that VirC1 promotes conjugative T-DNA transfer by stimulating generation of multiple copies per cell of the T-DNA substrate (T-complex) through pairwise interactions with the processing factors VirD2 relaxase, VirC2, and VirD1. VirC1 also associates with the polar membrane and recruits T-complexes to cell poles, the site of VirB/D4 T4S machine assembly. VirC1 Walker A mutations abrogate T-complex generation and polar recruitment, whereas the native protein recruits T-complexes to cell poles independently of other polar processing factors (VirC2, VirD1) or T4S components (VirD4 substrate receptor, VirB channel subunits). We propose that A. tumefaciens has appropriated a progenitor ParA/MinD-like ATPase to promote conjugative DNA transfer by: (i) nucleating relaxosome assembly at oriT-like T-DNA border sequences and (ii) spatially positioning the transfer intermediate at the cell pole to coordinate substrate-T4S channel docking.
{\it In vivo\/} induction of DNA changes in cervicovaginal epithelium by perinatal estrogen exposure
Resumo:
Epidemiological studies have associated estrogens with human neoplasm such as the endometrium, cervix, vagina, breast, and liver. Perinatal exposure to natural (17$\beta$-estradiol (17$\beta$-E$\sb2)\rbrack$ and synthetic (diethylstilbestrol (DES)) estrogens induces neoplastic changes in humans and rodents. Previous studies demonstrated that neonatal 17$\beta$-E$\sb2$ treatment increased the nuclear DNA content of mouse cervicovaginal epithelium that preceded histologically evident neoplasia. In order to determine whether this effect was specific to 17$\beta$-E$\sb2,$ associated with chromosomal changes, and relevant to the human, female BALB/c mice were treated neonatally with either 17$\alpha$-estradiol (17$\alpha$-E$\sb2)$ and 5$\beta$-dihydrotestosterone ($5\beta$-DHT), both inactive steroids in adult reproductive tissue, or 17$\beta$-E$\sb2.$ Ten-day-old mice received pellet implants of 17$\beta$-E$\sb2,$ 17$\alpha$-E$\sb2,$ $5\beta$-DHT, or cholesterol. Seventy-day-old cervicovaginal tracts were examined histologically and flow cytometrically. 17$\beta$-E$\sb2$-treated animals were evaluated by fluorescent in situ hybridization (FISH) using a probe specific for chromosome 1. Trisomy of chromosomes 1, 7, 11, and 17 was evaluated by FISH in cervicovaginal material from 19 DES-exposed and 19 control patients.^ $17\beta$-E$\sb2, 17\alpha$-E$\sb2$, and $5\beta$-DHT-induced dramatic developmental and histological changes in the cervicovaginal tract, including hypospadia, hyperplasia, and persistent cornification. The changes induced by 17$\alpha$-E$\sb2$ were equivalent to 17$\beta$-E$\sb2.$ Neonatal 17$\alpha$-E$\sb2$-induced adenosquamous cervicovaginal tumors at 24 months. 17$\alpha$-E$\sb2$ and $5\beta$-DHT significantly increased the nuclear DNA content over control animals, but at significantly lower levels than 17$\beta$-E$\sb2.$ DNA ploidy changes were highest (80%) in animals treated neonatally and secondarily with 17$\beta$-E$\sb2.$ Secondary 17$\alpha$-E$\sb2$ and $5\beta$-DHT administration, unlike 17$\beta$-E$\sb2,$ didn't significantly increase DNA content. Chromosome 1 trisomy incidence was 66% in neonatal 17$\beta$-E$\sb2$-treated animals. Trisomy was evident in 4 DES-exposed patients: one patient with trisomy of chromosomes 1, 7, and 11; one patient with chromosome 7 trisomy; and two patients with chromosome 1 trisomy. These data demonstrated the biological effects of 17$\alpha$-E$\sb2$ and $5\beta$-DHT were age-dependent, 17$\alpha$-E$\sb2$ was equivalent to 17$\beta$-E$\sb2$ and tumorigenic when administered neonatally, and histological changes were not steroid specific. Chromosomal changes were associated with increased nuclear DNA content and chromosomal changes may be an early event in the development of tumors in human DES-exposed tissues. ^
Resumo:
Double minutes (dm) are small chromatin particles of 0.3 microns diameter found only in the metaphase cells of human and murine tumors. Dm are unique cytogenetic structures since their numbers per cell show wide variation. At cell division, dm are retained despite the lack of centromeres. In squash preparations, dm show clustering often in association with chromosomes. Human carcinoma cell line SW613-S18 was found to have large numbers of dm and biological characteristics favorable for mitotic synchronization and chromosome isolation experiments.^ S18 cells were synchronized to mitosis with metabolic and mitotic blocking compounds. Mitotic cells were lysed to release chromosomes and dm from the mitotic spindle and the resulting suspensions were fractionated to enrich for dm. The DNA in enriched fractions was characterized. The reassociation kinetics of dm-DNA driven with placental human DNA was similar to the reassociation curve of labeled placental DNA under similar conditions. In situ hybridization of dm-DNA to tumor and normal metaphase cells showed grain localization over the entire karyotype. Dm-DNA was shown by pulse chase DNA replication experiments to replicate during early and mid S-phase of the cell cycle, but not in late S-phase. In addition, BrdUrd incorporation studies showed that dm-DNA replicates only once during the S-phase. Premature chromosome condensation studies suggest the basis of numerical heterogeneity of dm is nondisjunction, not anomalous or unscheduled DNA replication.^ These data and previous cytochemical banding studies of dm in SW613-S18 indicate that dm-DNA is chromosomal in origin. No evidence of gene amplification was found in the DNA reassociation data. It is likely that dm-DNA represents the pale-staining G-band regions of the human karyotype in this cell line. ^