949 resultados para DEHYDROGENASE ENZYMES
Resumo:
Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.
Resumo:
A protozoan flagelate has recently been isolated from Amaranthus retroflexus. This plant grows near economically important crops in southeastern Spain, which are known to be parasitized by Phytomonas spp. The present study focuses on the characterization of the energy metabolism of this new isolate. These flagellates utilize glucose efficiently as their primary energy source, although they are unable to completely degrade it. They excrete ethanol, acetate, glycine, and succinate in lower amount, as well as ammonium. The presence of glycosomes was indicated by the early enzymes of the glycolytic pathway, one enzyme of the glycerol pathway (glycerol kinase), and malate dehydrogenase. No evidence of a fully functional citric-acid cycle was found. In the absence of catalase activity, these flagellates showed significant superoxide dismutase activity located in the glycosomal and cytosolic fractions. These trypanosomes, despite being morphologically and metabolically similar to other Phytomonas isolated from the same area, showed significant differences, suggesting that they are phylogenetically different species.
Resumo:
The alpha-glycerophosphate dehydrogenase (alpha-GPDH) activity in flight muscles of Panstrongylus megistus and Triatoma sordida, vectors of Chagas disease in Brazil, was studied. Both species showed higher enzymatic activities in fliers than in non-fliers insects. T. sordida exhibited a higher proportion of flier insects than P. megistus. A possible role of alpha-GPDH on triatomines flight is discussed.
Resumo:
α-glycerophosphate dehydrogenase (α-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.
Resumo:
Almost all individuals (182) belonging to an Amazonian riverine population (Portuchuelo, RO, Brazil) were investigated for ascertaining data on epidemiological aspects of malaria. Thirteen genetic blood polymorphisms were investigated (ABO, MNSs, Rh, Kell, and Duffy systems, haptoglobins, hemoglobins, and the enzymes glucose-6-phosphate dehydrogenase, glyoxalase, phosphoglucomutase, carbonic anhydrase, red cell acid phosphatase, and esterase D). The results indicated that the Duffy system is associated with susceptibility to malaria, as observed in other endemic areas. Moreover, suggestions also arose indicating that the EsD and Rh loci may be significantly associated with resistance to malaria. If statistical type II errors and sample stratification could be ruled out, hypotheses on the existence of a causal mechanism or an unknown closely linked locus involved in susceptibility to malaria infection may explain the present findings.
Resumo:
N-allyl (NAOx) and N-propyl (NPOx) oxamates were designed as inhibitors of alpha-hydroxyacid dehydrogenase (HADH) isozyme II from Trypanosoma cruzi. The kinetic studies showed that NAOx and NPOx were competitive inhibitors of HADH-isozyme II (Ki = 72 µM, IC50 = 0.33 mM and 70 µM, IC50 = 0.32 mM, respectively). The attachment of the allylic and propylic chains to nitrogen of the competitive inhibitor oxamate (Ki = 0.91 mM, IC50 = 4.25 mM), increased 12.6 and 13-folds respectively, the affinity for T. cruzi HADH-isozyme II. NAOx and NPOx were selective inhibitors of HADH-isozyme II, because other T. cruzi dehydrogenases were not inhibited by these substances. Since HADH-isozyme II participates in the energy metabolism of T. cruzi, a trypanocidal effect can be expected with these inhibitors. However, we were not able to detect any trypanocidal activity with these oxamates. When the corresponding ethyl esters of N-allyl (Et-NAOx) and N-propyl (Et-NPOx) oxamates were tested as a possible trypanocidal prodrugs, in comparison with nifurtimox and benznidazole, the expected trypanocidal effects were obtained.
Resumo:
Schistosoma mansoni, an intravascular parasite, lives in a hostile environment in close contact with host humoral and cellular cytotoxic factors. To establish itself in the host, the parasite has evolved a number of immune evasion mechanisms, such as antioxidant enzymes. Our laboratory has demonstrated that the expression of antioxidant enzymes is developmentally regulated, with the highest levels present in the adult worm, the stage least susceptible to immune elimination, and the lowest levels in the larval stages, the most susceptible to immune elimination. Vaccination of mice with naked DNA constructs containing Cu/Zn cytosolic superoxide dismutase (CT-SOD), signal-peptide containing SOD or glutathione peroxidase (GPX) showed significant levels of protection compared to a control group. We have further shown that vaccination with SmCT-SOD but not SmGPX results in elimination of adult worms. Anti-oxidant enzyme vaccine candidates offer an advance over existing vaccine strategies that all seem to target the larval developmental stages in that they target adult worms and thus may have therapeutic as well as prophylactic value. To eliminate the potential for cross-reactivity of SmCT-SOD with human superoxide dismutase, we identified parasite-specific epitope-containing peptides. Our results serve as a basis for developing a subunit vaccine against schistosomiasis.
Resumo:
The schistosomicidal properties of Nigella sativaseeds were tested in vitro against Schistosoma mansoni miracidia, cercariae, and adult worms. Results indicate its strong biocidal effects against all stages of the parasite and also showed an inhibitory effect on egg-laying of adult female worms. In the present work we also studied the effects of crushed seeds on some antioxidant enzymes; which have a role in protection of adult worms against host oxidant killing; as well as some enzymes of glucose metabolism; which have a crucial role in the survival of adult worms inside their hosts. The data revealed that the used drug induce an oxidative stress against adult worms which indicated by a decrease in the activities of both antioxidant enzymes, superoxide dismutase, glutathione peroxidase, and glutathione reductase and enzymes of glucose metabolism, hexokinase and glucose-6-phosphate dehydrogenase. Disturbing of such enzymes of adult worms using N. sativa seeds could in turn render the parasite vulnerable to damage by the host and may play a role in the antischistosomal potency of the used drug.
Resumo:
The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot.
Resumo:
This work has been carried out to investigate the effect of Schistosoma mansoni infection on mice livers after treatment with the ethanolic extract of Citrus reticulata root or the oleo-resin extract from Myrrh of Commiphora molmol tree (Mirazid), as a new antishistosomal drug. Marker enzymes for different cell organelles were measured; succinate dehydrogenase (SDH); lactate dehydrogenase (LDH) and its isoenzymes; glucose-6-phosphatase (G-6-Pase); acid phosphatase (AP) and 5'- nucleotidase. Liver function enzymes; aspartate aminotransferase (AST); alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were also estimated. Parasitological studies through ova count and worm burden will also be taken into consideration. The results showed a marked reduction in SDH, LDH, AST, and ALT enzyme activities and a significant increase in G-6-Pase, AP, 5'- nucleotidase, and ALP after S. mansoni infection. A noticeable alteration in LDH subunits were also noticed. Treatment with C. reticulata or Mirazid improved all the previous enzyme activities with a noticeable reduction in ova count and worm burden.
Resumo:
Induction of drug-metabolizing enzymes (DMEs) is highly species-specific and can lead to drug-drug interaction and toxicities. In this series of studies we tested the species specificity of the antidiabetic drug development candidate and mixed peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949, EMD) with regard to the induction of gene expression and activities of DMEs, their regulators, and typical PPAR target genes. EMD clearly induced PPARalpha target genes in rats in vivo and in rat hepatocytes but lacked significant induction of DMEs, except for cytochrome P450 (P450) 4A. CYP2C and CYP3A were consistently induced in livers of EMD-treated monkeys. Interestingly, classic rodent peroxisomal proliferation markers were induced in monkeys after 17 weeks but not after a 4-week treatment, a fact also observed in human hepatocytes after 72 h but not 24 h of EMD treatment. In human hepatocyte cultures, EMD showed similar gene expression profiles and induction of P450 activities as in monkeys, indicating that the monkey is predictive for human P450 induction by EMD. In addition, EMD induced a similar gene expression pattern as the PPARalpha agonist fenofibrate in primary rat and human hepatocyte cultures. In conclusion, these data showed an excellent correlation of in vivo data on DME gene expression and activity levels with results generated in hepatocyte monolayer cultures, enabling a solid estimation of human P450 induction. This study also clearly highlighted major differences between primates and rodents in the regulation of major inducible P450s, with evidence of CYP3A and CYP2C inducibility by PPARalpha agonists in monkeys and humans.
Resumo:
Despite effective chemotherapy, schistosomiasis remains the second largest public health problem in the developing world. Currently, vaccination is the new strategy for schistosomiasis control. The presence of common antigenic fractions between Schistosoma mansoni and its intermediate host provides a source for the preparation of a proper vaccine. The objective of this paper is to evaluate the nucleoprotein extracted from either susceptible or resistant snails to protect against schistosomiasis. The vaccination schedule consisted of a subcutaneous injection of 50 µg protein of each antigen followed by another inoculation 15 days later. Analyses of marker enzymes for different cell organelles [succinate dehydrogenase, lactate dehydrogenase (LDH), glucose-6-phosphatase, acid phosphatase and 5'-nucleotidase] were carried out. Energetic parameters (ATP, ADP, AMP, phosphate potentials, inorganic phosphate, amino acids and LDH isoenzymes) were also investigated. The work was extended to record worm and ova counts, oogram determination in the liver and intestine and the histopathological pattern of the liver. The nucleoprotein of susceptible snails showed reduction in worm and ova counts by 70.96% and 51.31%, respectively, whereas the nucleoprotein of resistant snails showed reductions of 9.67% and 16.77%, respectively. In conclusion, we found that the nucleoprotein of susceptible snails was more effective in protecting against schistosomiasis.
Resumo:
Isoniazid (INH), one of the most important drugs used in antituberculosis (anti-TB) treatment, is also the major drug involved in hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, such as NAT2, CYP2E1, GSTM1 and GSTT1, that code for drug-metabolising enzymes. Our goal was to examine the polymorphisms in these enzymes as susceptibility factors to anti-TB drug-induced hepatitis in Brazilian individuals. In a case-control design, 167 unrelated active tuberculosis patients from the University Hospital of the Federal University of Rio de Janeiro, Brazil, were enrolled in this study. Patients with a history of anti-TB drug-induced acute hepatitis (cases with an increase to 3 times the upper limit of normal serum transaminases and symptoms of hepatitis) and patients with no evidence of anti-TB hepatic side effects (controls) were genotyped for NAT2, CYP2E1, GSTM1 and GSTT1 polymorphisms. Slow acetylators had a higher incidence of hepatitis than intermediate/rapid acetylators [22% (18/82) vs. 9.8% (6/61), odds ratio (OR), 2.86, 95% confidence interval (CI), 1.06-7.68, p = 0.04). Logistic regression showed that slow acetylation status was the only independent risk factor (OR 3.59, 95% CI, 2.53-4.64, p = 0.02) for the occurrence of anti-TB drug-induced hepatitis during anti-TB treatment with INH-containing schemes in Brazilian individuals.
Resumo:
Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.