826 resultados para DEFORMATION QUANTIZATION
Resumo:
Moly-TZM was deformed at constant strain rate of 1.0 s(-1) to investigate the high strain rate deformation behaviour by microstructural and stress response change within a temperature range of 1400-1700 degrees C. To correlate the deformation behaviour with orientational change, recrystallization and recovery of the material, the microstructural investigation was undertaken using scanning electron microscopy (SEM) of electron back scattered diffraction (EBSD). Depending on the grain size and orientation spread recrystallized grains were identified and texture was calculated. Change in grain boundary characteristics with increasing temperature was determined by the misorientation angle distribution for the deformed and recrystallized grains. Subgrain coalescence and increase in subgrain size with increasing temperature was observed, indicating recrystallization not only occurred from the nucleation of the dislocation free grains in grain boundaries but also from the subgrain rotation and merging of the subgrains by annihilation of the low angle grain boundaries. Detailed studies on the evolution of texture of recrystallized grains showed continuous increase in <001> fiber texture in recrystallised grains, in contrast to a mixed fiber <001> +<111> for the deformed grains.
Resumo:
For obtaining dynamic response of structure to high frequency shock excitation spectral elements have several advantages over conventional methods. At higher frequencies transverse shear and rotary inertia have a predominant role. These are represented by the First order Shear Deformation Theory (FSDT). But not much work is reported on spectral elements with FSDT. This work presents a new spectral element based on the FSDT/Mindlin Plate Theory which is essential for wave propagation analysis of sandwich plates. Multi-transformation method is used to solve the coupled partial differential equations, i.e., Laplace transforms for temporal approximation and wavelet transforms for spatial approximation. The formulation takes into account the axial-flexure and shear coupling. The ability of the element to represent different modes of wave motion is demonstrated. Impact on the derived wave motion characteristics in the absence of the developed spectral element is discussed. The transient response using the formulated element is validated by the results obtained using Finite Element Method (FEM) which needs significant computational effort. Experimental results are provided which confirms the need to having the developed spectral element for the high frequency response of structures. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 degrees C, 150 degrees C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C-2)
Resumo:
We quantize the space of 2-charge fuzzballs in IIB supergravity on K3. The resulting entropy precisely matches the D1-D5 black hole entropy, including a specific numerical coefficient. A partial match (ie., a smaller coefficient) was found by Rychkov a decade ago using the Lunin-Mathur subclass of solutions - we use a simple observation to generalize his approach to the full moduli space of K3 fuzzballs, filling a small gap in the literature.
Resumo:
Using first-principles calculations, we establish the existence of highly-stable polymorphs of hcp metals (Ti, Mg, Be, La and Y) with nanoscale structural periodicity. They arise from heterogeneous deformation of the hcp structure occurring in response to large shear stresses localized at the basal planes separated by a few nanometers. Through Landau theoretical analysis, we show that their stability derives from nonlinear coupling between strains at different length scales. Such multiscale hyperelasticity and long-period structures constitute a new mechanism of size-dependent plasticity and its enhancement in nanoscale hcp metals.
Resumo:
The degree to which the lithosphere and mantle are coupled and contribute to surface deformation beneath continental regions remains a fundamental question in the field of geodynamics. Here we use a new approach with a surface deformation field constrained by GPS, geologic, and seismicity data, together with a lithospheric geodynamic model, to solve for tractions inferred to be generated by mantle convection that (1) drive extension within interior Alaska generating southward directed surface motions toward the southern convergent plate boundary, (2) result in accommodation of the relative motions between the Pacific and North America in a comparatively small zone near the plate boundary, and (3) generate the observed convergence within the North American plate interior in the Mackenzie mountains in northwestern Canada. The evidence for deeper mantle influence on surface deformation beneath a continental region suggests that this mechanism may be an important contributing driver to continental plate assemblage and breakup.
Resumo:
An experimental study of plane strain wedge indentation of a model porous brittle solid has been made to understand the effect of indentation parameters on the evolution of the deformation field and the accompanying volume change. A series of high-speed, high-resolution images of the indentation region and simultaneous measurements of load response were captured through the progression of the indentation process. Particle image velocimetry analysis of the images facilitated in situ measurement of the evolution of the resulting plastic zone in terms of incremental material displacement (velocity), strain rate, strain and volume change (e.g., local pore collapse). These measurements revealed initiation and propagation of flow localizations and fractures, as well as enabled estimate of volume changes occurring in the deformation zone. The results were directly compared with theoretical estimates of indentation pressure and deformation zone geometry and were used to validate a modified cavity expansion solution that incorporates effects of volume changes in the plastic zone. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Secondary atomization characteristics of burning bicomponent (ethanol-water) droplets containing titania nanoparticles (NPs) in dilute (0.5% and 1 wt.%) and dense concentrations (5% and 7.5 wt.%) are studied experimentally at atmospheric pressure under normal gravity. It is observed that both types of nanofuel droplets undergo distinct modes of secondary breakup, which are primarily responsible for transporting particles from the droplet domain to the flame zone. For dilute nanosuspensions, disruptive response is characterized by low intensity atomization modes that cause small-scale localized flame distortion. In contrast, the disruption behavior at dense concentrations is governed by high intensity bubble ejections, which result in severe disruption of the flame envelope.
Resumo:
Geocells are three-dimensional expandable panels with a wide range of applications in geotechnical engineering. A geocell is made up of many internally connected single cells. The current study discusses the joint strength and the wall deformation characteristics of a single cell when it is subjected to uniaxial compression. The study helps to understand the causes for the failure of the single cell in a cellular confinement system. Experimental studies were conducted on single cells with cell pockets filled up with three different infill materials, namely silty clay, sand, and the aggregates. The results of the experimental study revealed that the deformation of the geocell wall decreases with the increase in the friction angle of the infill material. Experimental results were also validated using numerical simulations carried out using Lagrangian analysis software. The experiment and the numerical results were found to be in good agreement with each other. A simple analytical model based on the theory of thin cylinders is also proposed to calculate the accumulated strain of the geocell wall. This model operates under a simple elastic solution framework. The proposed model slightly overestimates the strains as compared with experimental and numerical values. (C) 2014 American Society of Civil Engineers.
Resumo:
The kinematic flow pattern in slow deformation of a model dense granular medium is studied at high resolution using in situ imaging, coupled with particle tracking. The deformation configuration is indentation by a flat punch under macroscopic plane-strain conditions. Using a general analysis method, velocity gradients and deformation fields are obtained from the disordered grain arrangement, enabling flow characteristics to be quantified. The key observations are the formation of a stagnation zone, as in dilute granular flow past obstacles; occurrence of vortices in the flow immediately underneath the punch; and formation of distinct shear bands adjoining the stagnation zone. The transient and steady state stagnation zone geometry, as well as the strength of the vortices and strain rates in the shear bands, are obtained from the experimental data. All of these results are well-reproduced in exact-scale non-smooth contact dynamics simulations. Full 3D numerical particle positions from the simulations allow extraction of flow features that are extremely difficult to obtain from experiments. Three examples of these, namely material free surface evolution, deformation of a grain column below the punch and resolution of velocities inside the primary shear band, are highlighted. The variety of flow features observed in this model problem also illustrates the difficulty involved in formulating a complete micromechanical analytical description of the deformation.
Resumo:
In the present work, the effect of deformation mode (uniaxial compression, rolling and torsion) on the microstructural heterogeneities in a commercial purity Ni is reported. For a given equivalent von Mises strain, samples subjected to torsion have shown higher fraction of high-angle boundaries, kernel average misorientation and recrystallization nuclei when compared to uniaxially compressed and rolled samples. This is attributed to the differences in the slip system activity under different modes of deformation.
Resumo:
Despite the long history, so far there is no general theoretical framework for calculating the acoustic emission spectrum accompanying any plastic deformation. We set up a discrete wave equation with plastic strain rate as a source term and include the Rayleigh-dissipation function to represent dissipation accompanying acoustic emission. We devise a method of bridging the widely separated time scales of plastic deformation and elastic degrees of freedom. While this equation is applicable to any type of plastic deformation, it should be supplemented by evolution equations for the dislocation microstructure for calculating the plastic strain rate. The efficacy of the framework is illustrated by considering three distinct cases of plastic deformation. The first one is the acoustic emission during a typical continuous yield exhibiting a smooth stress-strain curve. We first construct an appropriate set of evolution equations for two types of dislocation densities and then show that the shape of the model stress-strain curve and accompanying acoustic emission spectrum match very well with experimental results. The second and the third are the more complex cases of the Portevin-Le Chatelier bands and the Luders band. These two cases are dealt with in the context of the Ananthakrishna model since the model predicts the three types of the Portevin-Le Chatelier bands and also Luders-like bands. Our results show that for the type-C bands where the serration amplitude is large, the acoustic emission spectrum consists of well-separated bursts of acoustic emission. At higher strain rates of hopping type-B bands, the burst-type acoustic emission spectrum tends to overlap, forming a nearly continuous background with some sharp acoustic emission bursts. The latter can be identified with the nucleation of new bands. The acoustic emission spectrum associated with the continuously propagating type-A band is continuous. These predictions are consistent with experimental results. More importantly, our study shows that the low-amplitude continuous acoustic emission spectrum seen in both the type-B and type-A band regimes is directly correlated to small-amplitude serrations induced by propagating bands. The acoustic emission spectrum of the Luders-like band matches with recent experiments as well. In all of these cases, acoustic emission signals are burstlike, reflecting the intermittent character of dislocation-mediated plastic flow.
Resumo:
This paper presents the stability analysis of functionally graded plate integrated with piezoelectric actuator and sensor at the top and bottom face, subjected to electrical and mechanical loading. The finite element formulation is based on first order and higher order shear deformation theory, degenerated shell element, von-Karman hypothesis and piezoelectric effect. The equation for static analysis is derived by using the minimum energy principle and solutions for critical buckling load is obtained by solving eigenvalue problem. The material properties of the functionally graded plate are assumed to be graded along the thickness direction according to simple power law function. Two types of boundary conditions are used, such as SSSS (simply supported) and CSCS (simply supported along two opposite side perpendicular to the direction of compression and clamped along the other two sides). Sensor voltage is calculated using present analysis for various power law indices and FG (functionally graded) material gradations. The stability analysis of piezoelectric FG plate is carried out to present the effects of power law index, material variations, applied mechanical pressure and piezo effect on buckling and stability characteristics of FG plate.
Resumo:
The growth of Nb3Sn by bronze technique on single crystals and deformed Nb is studied. The grain boundary diffusion-controlled growth rate is found to be higher for Nb-(0 1 3) than Nb-(0 1 1) because of smaller grain size of Nb3Sn. The difference in grain size is explained with the help of surface energies leading to different nucleation barrier. Significantly finer grains and higher growth rate of the product phase is found for rolled Nb because of available defects acting as potential nucleation sites.
Resumo:
Using in situ, high-speed imaging of a hard wedge sliding against pure aluminum, and image analysis by particle image velocimetry, the deformation field in sliding is mapped at high resolution. This model system is representative of asperity contacts on engineered surfaces and die-workpiece contacts in deformation and machining processes. It is shown that large, uniform plastic strains of 1-5 can be imposed at the Al surface, up to depths of 500 mu m, under suitable sliding conditions. The spatial strain and strain rate distributions are significantly influenced by the initial deformation state of the Al, e.g., extent of work hardening, and sliding incidence angle. Uniform straining occurs only under conditions of steady laminar flow in the metal. Large pre-strains and higher sliding angles promote breakdown in laminar flow due to surface fold formation or flow localization in the form of shear bands, thus imposing limits on uniform straining by sliding. Avoidance of unsteady sliding conditions, and selection of parameters like sliding angle, thus provides a way to control the deformation field. Key characteristics of the sliding deformation such as strain and strain rate, laminar flow, folding and prow formation are well predicted by finite element simulation. The deformation field provides a quantitative basis for interpreting wear particle formation. Implications for engineering functionally graded surfaces, sliding wear and ductile failure in metals are discussed.