882 resultados para Cuisine evaluation criteria
Resumo:
The over representation of novice drivers in crashes is alarming. Research indicates that one in five drivers’ crashes within their first year of driving. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the drive. This paper presents a system that evaluates the data stream acquired from multiple in-vehicle sensors (acquired from Driver Vehicle Environment-DVE) using fuzzy rules and classifies the driving manoeuvres (i.e. overtake, lane change and turn) as low risk or high risk. The fuzzy rules use parameters such as following distance, frequency of mirror checks, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvre to assess risk. The fuzzy rules to estimate risk are designed after analysing the selected driving manoeuvres performed by driver trainers. This paper focuses mainly on the difference in gaze pattern for experienced and novice drivers during the selected manoeuvres. Using this system, trainers of novice drivers would be able to empirically evaluate and give feedback to the novice drivers regarding their driving behaviour.
Resumo:
Design teams are confronted with the quandary of choosing apposite building control systems to suit the needs of particular intelligent building projects, due to the availability of innumerable ‘intelligent’ building products and a dearth of inclusive evaluation tools. This paper is organised to develop a model for facilitating the selection evaluation for intelligent HVAC control systems for commercial intelligent buildings. To achieve these objectives, systematic research activities have been conducted to first develop, test and refine the general conceptual model using consecutive surveys; then, to convert the developed conceptual framework into a practical model; and, finally, to evaluate the effectiveness of the model by means of expert validation. The results of the surveys are that ‘total energy use’ is perceived as the top selection criterion, followed by the‘system reliability and stability’, ‘operating and maintenance costs’, and ‘control of indoor humidity and temperature’. This research not only presents a systematic and structured approach to evaluate candidate intelligent HVAC control system against the critical selection criteria (CSC), but it also suggests a benchmark for the selection of one control system candidate against another.
Resumo:
Identification of hot spots, also known as the sites with promise, black spots, accident-prone locations, or priority investigation locations, is an important and routine activity for improving the overall safety of roadway networks. Extensive literature focuses on methods for hot spot identification (HSID). A subset of this considerable literature is dedicated to conducting performance assessments of various HSID methods. A central issue in comparing HSID methods is the development and selection of quantitative and qualitative performance measures or criteria. The authors contend that currently employed HSID assessment criteria—namely false positives and false negatives—are necessary but not sufficient, and additional criteria are needed to exploit the ordinal nature of site ranking data. With the intent to equip road safety professionals and researchers with more useful tools to compare the performances of various HSID methods and to improve the level of HSID assessments, this paper proposes four quantitative HSID evaluation tests that are, to the authors’ knowledge, new and unique. These tests evaluate different aspects of HSID method performance, including reliability of results, ranking consistency, and false identification consistency and reliability. It is intended that road safety professionals apply these different evaluation tests in addition to existing tests to compare the performances of various HSID methods, and then select the most appropriate HSID method to screen road networks to identify sites that require further analysis. This work demonstrates four new criteria using 3 years of Arizona road section accident data and four commonly applied HSID methods [accident frequency ranking, accident rate ranking, accident reduction potential, and empirical Bayes (EB)]. The EB HSID method reveals itself as the superior method in most of the evaluation tests. In contrast, identifying hot spots using accident rate rankings performs the least well among the tests. The accident frequency and accident reduction potential methods perform similarly, with slight differences explained. The authors believe that the four new evaluation tests offer insight into HSID performance heretofore unavailable to analysts and researchers.
Resumo:
The multi-criteria decision making methods, Preference METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA), and the two-way Positive Matrix Factorization (PMF) receptor model were applied to airborne fine particle compositional data collected at three sites in Hong Kong during two monitoring campaigns held from November 2000 to October 2001 and November 2004 to October 2005. PROMETHEE/GAIA indicated that the three sites were worse during the later monitoring campaign, and that the order of the air quality at the sites during each campaign was: rural site > urban site > roadside site. The PMF analysis on the other hand, identified 6 common sources at all of the sites (diesel vehicle, fresh sea salt, secondary sulphate, soil, aged sea salt and oil combustion) which accounted for approximately 68.8 ± 8.7% of the fine particle mass at the sites. In addition, road dust, gasoline vehicle, biomass burning, secondary nitrate, and metal processing were identified at some of the sites. Secondary sulphate was found to be the highest contributor to the fine particle mass at the rural and urban sites with vehicle emission as a high contributor to the roadside site. The PMF results are broadly similar to those obtained in a previous analysis by PCA/APCS. However, the PMF analysis resolved more factors at each site than the PCA/APCS. In addition, the study demonstrated that combined results from multi-criteria decision making analysis and receptor modelling can provide more detailed information that can be used to formulate the scientific basis for mitigating air pollution in the region.
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
Evaluation, selection and finally decision making are all among important issues, which engineers face in long run of projects. Engineers implement mathematical and nonmathematical methods to make accurate and correct decisions, whenever needed. As extensive as these methods are, effects of any selected method on outputs achieved and decisions made are still suspicious. This is more controversial and challengeable, where evaluation is made among non-quantitative alternatives. In civil engineering and construction management problems, criteria include both quantitative and qualitative ones, such as aesthetic, construction duration, building and operation costs, and environmental considerations. As the result, decision making frequently takes place among non-quantitative alternatives. It should be noted that traditional comparison methods, including clear-cut and inflexible mathematics, have always been criticized. This paper demonstrates a brief review of traditional methods of evaluating alternatives. It also offers a new decision making method using, fuzzy calculations. The main focus of this research is some engineering issues, which have flexible nature and vague borders. Suggested method provides analyzability of evaluation for decision makers. It is also capable to overcome multi criteria and multi-referees problems. In order to ease calculations, a program named DeMA is introduced.
Resumo:
This report presents the findings of an exploratory study into the perceptions held by students regarding the use of criterion-referenced assessment in an undergraduate differential equations class. Students in the class were largely unaware of the concept of criterion referencing and of the various interpretations that this concept has among mathematics educators. Our primary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. Quantitative data and qualitative feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, the manner in which they actually approached the assessment activity was not altered as a result of the use of explicitly communicated grading criteria.
Resumo:
In 2008, a three-year pilot ‘pay for performance’ (P4P) program, known as ‘Clinical Practice Improvement Payment’ (CPIP) was introduced into Queensland Health (QHealth). QHealth is a large public health sector provider of acute, community, and public health services in Queensland, Australia. The organisation has recently embarked on a significant reform agenda including a review of existing funding arrangements (Duckett et al., 2008). Partly in response to this reform agenda, a casemix funding model has been implemented to reconnect health care funding with outcomes. CPIP was conceptualised as a performance-based scheme that rewarded quality with financial incentives. This is the first time such a scheme has been implemented into the public health sector in Australia with a focus on rewarding quality, and it is unique in that it has a large state-wide focus and includes 15 Districts. CPIP initially targeted five acute and community clinical areas including Mental Health, Discharge Medication, Emergency Department, Chronic Obstructive Pulmonary Disease, and Stroke. The CPIP scheme was designed around key concepts including the identification of clinical indicators that met the set criteria of: high disease burden, a well defined single diagnostic group or intervention, significant variations in clinical outcomes and/or practices, a good evidence, and clinician control and support (Ward, Daniels, Walker & Duckett, 2007). This evaluative research targeted Phase One of implementation of the CPIP scheme from January 2008 to March 2009. A formative evaluation utilising a mixed methodology and complementarity analysis was undertaken. The research involved three research questions and aimed to determine the knowledge, understanding, and attitudes of clinicians; identify improvements to the design, administration, and monitoring of CPIP; and determine the financial and economic costs of the scheme. Three key studies were undertaken to ascertain responses to the key research questions. Firstly, a survey of clinicians was undertaken to examine levels of knowledge and understanding and their attitudes to the scheme. Secondly, the study sought to apply Statistical Process Control (SPC) to the process indicators to assess if this enhanced the scheme and a third study examined a simple economic cost analysis. The CPIP Survey of clinicians elicited 192 clinician respondents. Over 70% of these respondents were supportive of the continuation of the CPIP scheme. This finding was also supported by the results of a quantitative altitude survey that identified positive attitudes in 6 of the 7 domains-including impact, awareness and understanding and clinical relevance, all being scored positive across the combined respondent group. SPC as a trending tool may play an important role in the early identification of indicator weakness for the CPIP scheme. This evaluative research study supports a previously identified need in the literature for a phased introduction of Pay for Performance (P4P) type programs. It further highlights the value of undertaking a formal risk assessment of clinician, management, and systemic levels of literacy and competency with measurement and monitoring of quality prior to a phased implementation. This phasing can then be guided by a P4P Design Variable Matrix which provides a selection of program design options such as indicator target and payment mechanisms. It became evident that a clear process is required to standardise how clinical indicators evolve over time and direct movement towards more rigorous ‘pay for performance’ targets and the development of an optimal funding model. Use of this matrix will enable the scheme to mature and build the literacy and competency of clinicians and the organisation as implementation progresses. Furthermore, the research identified that CPIP created a spotlight on clinical indicators and incentive payments of over five million from a potential ten million was secured across the five clinical areas in the first 15 months of the scheme. This indicates that quality was rewarded in the new QHealth funding model, and despite issues being identified with the payment mechanism, funding was distributed. The economic model used identified a relative low cost of reporting (under $8,000) as opposed to funds secured of over $300,000 for mental health as an example. Movement to a full cost effectiveness study of CPIP is supported. Overall the introduction of the CPIP scheme into QHealth has been a positive and effective strategy for engaging clinicians in quality and has been the catalyst for the identification and monitoring of valuable clinical process indicators. This research has highlighted that clinicians are supportive of the scheme in general; however, there are some significant risks that include the functioning of the CPIP payment mechanism. Given clinician support for the use of a pay–for-performance methodology in QHealth, the CPIP scheme has the potential to be a powerful addition to a multi-faceted suite of quality improvement initiatives within QHealth.
Resumo:
Open pit mine operations are complex businesses that demand a constant assessment of risk. This is because the value of a mine project is typically influenced by many underlying economic and physical uncertainties, such as metal prices, metal grades, costs, schedules, quantities, and environmental issues, among others, which are not known with much certainty at the beginning of the project. Hence, mining projects present a considerable challenge to those involved in associated investment decisions, such as the owners of the mine and other stakeholders. In general terms, when an option exists to acquire a new or operating mining project, , the owners and stock holders of the mine project need to know the value of the mining project, which is the fundamental criterion for making final decisions about going ahead with the venture capital. However, obtaining the mine project’s value is not an easy task. The reason for this is that sophisticated valuation and mine optimisation techniques, which combine advanced theories in geostatistics, statistics, engineering, economics and finance, among others, need to be used by the mine analyst or mine planner in order to assess and quantify the existing uncertainty and, consequently, the risk involved in the project investment. Furthermore, current valuation and mine optimisation techniques do not complement each other. That is valuation techniques based on real options (RO) analysis assume an expected (constant) metal grade and ore tonnage during a specified period, while mine optimisation (MO) techniques assume expected (constant) metal prices and mining costs. These assumptions are not totally correct since both sources of uncertainty—that of the orebody (metal grade and reserves of mineral), and that about the future behaviour of metal prices and mining costs—are the ones that have great impact on the value of any mining project. Consequently, the key objective of this thesis is twofold. The first objective consists of analysing and understanding the main sources of uncertainty in an open pit mining project, such as the orebody (in situ metal grade), mining costs and metal price uncertainties, and their effect on the final project value. The second objective consists of breaking down the wall of isolation between economic valuation and mine optimisation techniques in order to generate a novel open pit mine evaluation framework called the ―Integrated Valuation / Optimisation Framework (IVOF)‖. One important characteristic of this new framework is that it incorporates the RO and MO valuation techniques into a single integrated process that quantifies and describes uncertainty and risk in a mine project evaluation process, giving a more realistic estimate of the project’s value. To achieve this, novel and advanced engineering and econometric methods are used to integrate financial and geological uncertainty into dynamic risk forecasting measures. The proposed mine valuation/optimisation technique is then applied to a real gold disseminated open pit mine deposit to estimate its value in the face of orebody, mining costs and metal price uncertainties.
Resumo:
The underlying objective of this study was to develop a novel approach to evaluate the potential for commercialisation of a new technology. More specifically, this study examined the 'ex-ante'. evaluation of the technology transfer process. For this purpose, a technology originating from the high technology sector was used. The technology relates to the application of software for the detection of weak signals from space, which is an established method of signal processing in the field of radio astronomy. This technology has the potential to be used in commercial and industrial areas other than astronomy, such as detecting water leakages in pipes. Its applicability to detecting water leakage was chosen owing to several problems with detection in the industry as well as the impact it can have on saving water in the environment. This study, therefore, will demonstrate the importance of interdisciplinary technology transfer. The study employed both technical and business evaluation methods including laboratory experiments and the Delphi technique to address the research questions. There are several findings from this study. Firstly, scientific experiments were conducted and these resulted in a proof of concept stage of the chosen technology. Secondly, validation as well as refinement of criteria from literature that can be used for „ex-ante. evaluation of technology transfer has been undertaken. Additionally, after testing the chosen technology.s overall transfer potential using the modified set of criteria, it was found that the technology is still in its early stages and will require further development for it to be commercialised. Furthermore, a final evaluation framework was developed encompassing all the criteria found to be important. This framework can help in assessing the overall readiness of the technology for transfer as well as in recommending a viable mechanism for commercialisation. On the whole, the commercial potential of the chosen technology was tested through expert opinion, thereby focusing on the impact of a new technology and the feasibility of alternate applications and potential future applications.
Resumo:
Many academic researchers have conducted studies on the selection of design-build (DB) delivery method; however, there are few studies on the selection of DB operational variations, which poses challenges to many clients. The selection of DB operational variation is a multi-criteria decision making process that requires clients to objectively evaluate the performance of each DB operational variation with reference to the selection criteria. This evaluation process is often characterized by subjectivity and uncertainty. In order to resolve this deficiency, the current investigation aimed to establish a fuzzy multicriteria decision-making (FMCDM) model for selecting the most suitable DB operational variation. A three-round Delphi questionnaire survey was conducted to identify the selection criteria and their relative importance. A fuzzy set theory approach, namely the modified horizontal approach with the bisector error method, was applied to establish the fuzzy membership functions, which enables clients to perform quantitative calculations on the performance of each DB operational variation. The FMCDM was developed using the weighted mean method to aggregate the overall performance of DB operational variations with regard to the selection criteria. The proposed FMCDM model enables clients to perform quantitative calculations in a fuzzy decision-making environment and provides a useful tool to cope with different project attributes.
Resumo:
This paper seeks to address the highly pervasive discourse that journalism is ‘in crisis’ by outlining four criteria by which we might evaluate the ‘health’ of the practice (measures of both quantity and quality of output). It offers an extremely brief meta-level analysis of existing research, and posits that when judged according to these four criteria, journalism might actually in reasonable health,and that we ought to be far more optimistic about its future. This assessment therefore challenges the ‘business-centric’ evaluation which often dominates discussions (in the media as well as academia) about the profession’s supposedly dire future.
Resumo:
This study proposes a framework of a model-based hot spot identification method by applying full Bayes (FB) technique. In comparison with the state-of-the-art approach [i.e., empirical Bayes method (EB)], the advantage of the FB method is the capability to seamlessly integrate prior information and all available data into posterior distributions on which various ranking criteria could be based. With intersection crash data collected in Singapore, an empirical analysis was conducted to evaluate the following six approaches for hot spot identification: (a) naive ranking using raw crash data, (b) standard EB ranking, (c) FB ranking using a Poisson-gamma model, (d) FB ranking using a Poisson-lognormal model, (e) FB ranking using a hierarchical Poisson model, and (f) FB ranking using a hierarchical Poisson (AR-1) model. The results show that (a) when using the expected crash rate-related decision parameters, all model-based approaches perform significantly better in safety ranking than does the naive ranking method, and (b) the FB approach using hierarchical models significantly outperforms the standard EB approach in correctly identifying hazardous sites.
Resumo:
This paper engages with debates about whether comprehensive prior specification of criteria and standards is sufficient for informed professional judgement. A preoccupation has emerged with the specificity and explication of criteria intended to regulate judgement. This has resulted in criteria-compliance in the use of defined standards to validate judgements and improve reliability and consistency. Compliance has become a priority, the consequence being the prominence of explicit criteria, to the lack of acknowledgement of the operation of latent and meta-criteria within judgement practice. This paper examines judgement as a process involving three categories of assessment criteria in the context of standards-referenced systems: explicit, latent and meta-criteria. These are understood to be wholly interrelated and interdependent. A conceptualisation of judgement involving the interplay of the three criteria types is presented with an exploration of how they function to focus or alter assessments of quality in judgements of achievement in English and Mathematics.