937 resultados para Crystal X-ray
Resumo:
The main aim of this study is to apply synchrotron radiation techniques for the study of hydrated cement pastes. In particular, the tetracalcium aluminoferrite phase, C4AF in cement nomenclature, is the major iron-containing phase in Ordinary Portland Cement (OPC) and in iron rich belite calcium sulfoaluminate cements. In a first study, the hydration mechanism of pure tetracalcium aluminoferrite phase with water-to-solid ratio of 1.0 has been investigated by HR-SXRPD (high resolution synchrotron X-ray powder diffraction). C4AF in the presence of water hydrates to form mainly an iron-containing hydrogarnet-type (katoite) phase, C3A0.84F0.16H6, as single crystalline phase. Its crystal structure and stoichiometry were determined by the Rietveld method and the final disagreement factors were RWP=8.1% and RF=4.8% [1]. As the iron content in the product is lower than that in C4AF, it is assumed that part of the iron also goes to an amorphous iron rich gel, like the hydrated alumina-type gel, as hydration proceeds. Further results from the high-resolution study will be discussed. In a second study, the behavior of pure and iron-containing katoites (C3AH6 and C3A0.84F0.16H6) under pressure have been analyzed by SXRPD using a diamond anvil cell (DAC) and then their bulk moduli were determined. The role of the pressure transmitting medium (PTM) has also been studied. In this case, silicone oil as well as methanol/ethanol mixtures have been used as PTM. Some “new peaks” were detected in the pattern for C3A0.84F0.16H6 as pressure increases, when using ethanol/methanol as PTM. These new peaks were still present at ambient pressure after releasing the applied pressure. They may correspond to crystalline nordstrandite or doyleite from the crystallization of amorphous aluminium hydroxide. The results from the high-pressure study will also be discussed.
Resumo:
In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.
Resumo:
X-ray fluorescence (XRF) is a fast, low-cost, nondestructive, and truly multielement analytical technique. The objectives of this study are to quantify the amount of Na(+) and K(+) in samples of table salt (refined, marine, and light) and to compare three different methodologies of quantification using XRF. A fundamental parameter method revealed difficulties in quantifying accurately lighter elements (Z < 22). A univariate methodology based on peak area calibration is an attractive alternative, even though additional steps of data manipulation might consume some time. Quantifications were performed with good correlations for both Na (r = 0.974) and K (r = 0.992). A partial least-squares (PLS) regression method with five latent variables was very fast. Na(+) quantifications provided calibration errors lower than 16% and a correlation of 0.995. Of great concern was the observation of high Na(+) levels in low-sodium salts. The presented application may be performed in a fast and multielement fashion, in accordance with Green Chemistry specifications.
Resumo:
Diagnostic imaging techniques play an important role in assessing the exact location, cause, and extent of a nerve lesion, thus allowing clinicians to diagnose and manage more effectively a variety of pathological conditions, such as entrapment syndromes, traumatic injuries, and space-occupying lesions. Ultrasound and nuclear magnetic resonance imaging are becoming useful methods for this purpose, but they still lack spatial resolution. In this regard, recent phase contrast x-ray imaging experiments of peripheral nerve allowed the visualization of each nerve fiber surrounded by its myelin sheath as clearly as optical microscopy. In the present study, we attempted to produce high-resolution x-ray phase contrast images of a human sciatic nerve by using synchrotron radiation propagation-based imaging. The images showed high contrast and high spatial resolution, allowing clear identification of each fascicle structure and surrounding connective tissue. The outstanding result is the detection of such structures by phase contrast x-ray tomography of a thick human sciatic nerve section. This may further enable the identification of diverse pathological patterns, such as Wallerian degeneration, hypertrophic neuropathy, inflammatory infiltration, leprosy neuropathy and amyloid deposits. To the best of our knowledge, this is the first successful phase contrast x-ray imaging experiment of a human peripheral nerve sample. Our long-term goal is to develop peripheral nerve imaging methods that could supersede biopsy procedures.
Resumo:
X-ray powder diffraction was used to study the phase composition of human renal calculi. The stones were collected from 56 donors in Vitoria, Espirito Santo state, southeastern Brazil. An XRD phase quantification revealed that 61% of the studied renal stones were composed exclusively of calcium oxalate [34% formed only by calcium oxalate rnonohydrate (COM) and 27% presents both monohydrate and dihydratate calcium oxalate]. The 39% multi-composed calculi have various other phases such as uric acid and calcium phosphate. Rietveld refinement of XRD data of one apparent monophasic (COM) renal calculus revealed the presence of a small amount of hydroxyapatite. The presence of this second phase and the morphology of the stone (ellipsoidal) indicated that this calculus can be classified as non-papillary type and its nucleation process developed in closed kidney cavities. In order to show some advantages of the X-ray powder diffraction technique, a study of the phase transformation of monohydrate calcium oxalate into calcium carbonate (CaCO(3)) was carried out by annealing of a monophasic COM calculi at 200, 300, and 400 degrees C for 48 h in a N(2) gas atmosphere. The results of the XRD for the heat treated samples is ill good agreement with the thermogravimetric analysis found in the literature and shows that X-ray powder diffraction can be used as a suitable technique to study the composition and phase diagram of renal calculi. (C) 2008 International Centre for Diffraction Data.
Resumo:
Due to its relationship with other properties, wood density is the main wood quality parameter. Modern, accurate methods - such as X-ray densitometry - are applied to determine the spatial distribution of density in wood sections and to evaluate wood quality. The objectives of this study were to determinate the influence of growing conditions on wood density variation and tree ring demarcation of gmelina trees from fast growing plantations in Costa Rica. The wood density was determined by X-ray densitometry method. Wood samples were cut from gmelina trees and were exposed to low X-rays. The radiographic films were developed and scanned using a 256 gray scale with 1000 dpi resolution and the wood density was determined by CRAD and CERD software. The results showed tree-ring boundaries were distinctly delimited in trees growing in site with rainfall lower than 25 10 mm/year. It was demonstrated that tree age, climatic conditions and management of plantation affects wood density and its variability. The specific effect of variables on wood density was quantified by for multiple regression method. It was determined that tree year explained 25.8% of the total variation of density and 19.9% were caused by climatic condition where the tree growing. Wood density was less affected by the intensity of forest management with 5.9% of total variation.
Resumo:
Small angle X-ray scattering (SAXS) images of normal breast tissue and benign and malignant breast tumour tissues, fixed in formalin, were measured at the momentum transfer range of 0.063 nm(-1) <= q (=4 pi sin(theta/2)/lambda) <= 2.720 nm(-1). Four intrinsic parameters were extracted from the scattering profiles (1D SAXS image reduced) and, from the combination of these parameters, another three parameters were also created. All parameters, intrinsic and derived, were subject to discriminant analysis, and it was verified that parameters such as the area of diffuse scatter at the momentum transfer range 0.50 <= q <= 0.56 nm(-1), the ratio between areas of fifth-order axial and third-order lateral peaks and third-order axial spacing provide the most significant information for diagnosis (p < 0.001). Thus, in this work it was verified that by combining these three parameters it was possible to classify human breast tissues as normal, benign lesion or malignant lesion with a sensitivity of 83% and a specificity of 100%.
Resumo:
Context. Close binary supersoft X-ray sources (CBSS) are binary systems that contain a white dwarf with stable nuclear burning on its surface. These sources, first discovered in the Magellanic Clouds, have high accretion rates and near-Eddington luminosities (10(37)-10(38) erg s(-1)) with high temperatures (T = 2-7 x 10(5) K). Aims. The total number of known objects in the MC is still small and, in our galaxy, even smaller. We observed the field of the unidentified transient supersoft X-ray source RX J0527.8-6954 in order to identify its optical counterpart. Methods. The observation was made with the IFU-GMOS on the Gemini South telescope with the purpose of identifying stars with possible He II or Balmer emission or else of observing nebular extended jets or ionization cones, features that may be expected in CBSS. Results. The X-ray source is identified with a B5e V star that is associated with subarcsecond extended H alpha emission, possibly bipolar. Conclusions. If the primary star is a white dwarf, as suggested by the supersoft X-ray spectrum, the expected orbital period exceeds 21 h; therefore, we believe that the 9.4 h period found so far is not associated to this system.
Resumo:
The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the active galactic nucleus (AGN) jet is subject to precession. In this work, we performed three-dimensional hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, whose dynamics are coupled to a Navarro-Frenk-White dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle >40 degrees acting for at least three precession periods, reproducing both radio and X-ray maps well. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disk and the black hole angular momenta as 0.7-1.4. We were also able to constrain the present precession angle to 30 degrees-40 degrees, as well as the approximate age of the inflated bubbles to 100-150 Myr.
Resumo:
Aims. The CMa R1 star-forming region contains several compact clusters as well as many young early-B stars. It is associated with a well-known bright rimmed nebula, the nature of which is unclear (fossil HII region or supernova remnant). To help elucidate the nature of the nebula, our goal was to reconstruct the star-formation history of the CMa R1 region, including the previously unknown older, fainter low-mass stellar population, using X-rays. Methods. We analyzed images obtained with the ROSAT satellite, covering similar to 5 sq. deg. Complementary VRI photometry was performed with the Gemini South telescope. Colour-magnitude and colour-colour diagrams were used in conjunction with pre-main sequence evolutionary tracks to derive the masses and ages of the X-ray sources. Results. The ROSAT images show two distinct clusters. One is associated with the known optical clusters near Z CMa, to which similar to 40 members are added. The other, which we name the ""GU CMa"" cluster, is new, and contains similar to 60 members. The ROSAT sources are young stars with masses down to M(star) similar to 0.5 M(circle dot), and ages up to 10 Myr. The mass functions of the two clusters are similar, but the GU CMa cluster is older than the cluster around Z CMa by at least a few Myr. Also, the GU CMa cluster is away from any molecular cloud, implying that star formation must have ceased; on the contrary (as already known), star formation is very active in the Z CMa region.
Resumo:
Context. The cosmic time around the z similar to 1 redshift range appears crucial in the cluster and galaxy evolution, since it is probably the epoch of the first mature galaxy clusters. Our knowledge of the properties of the galaxy populations in these clusters is limited because only a handful of z similar to 1 clusters are presently known. Aims. In this framework, we report the discovery of a z similar to 0.87 cluster and study its properties at various wavelengths. Methods. We gathered X-ray and optical data (imaging and spectroscopy), and near and far infrared data (imaging) in order to confirm the cluster nature of our candidate, to determine its dynamical state, and to give insight on its galaxy population evolution. Results. Our candidate structure appears to be a massive z similar to 0.87 dynamically young cluster with an atypically high X-ray temperature as compared to its X-ray luminosity. It exhibits a significant percentage (similar to 90%) of galaxies that are also detected in the 24 mu m band. Conclusions. The cluster RXJ1257.2+4738 appears to be still in the process of collapsing. Its relatively high temperature is probably the consequence of significant energy input into the intracluster medium besides the regular gravitational infall contribution. A significant part of its galaxies are red objects that are probably dusty with on-going star formation.
Resumo:
Aims. We calculate the theoretical event rate of gamma-ray bursts (GRBs) from the collapse of massive first-generation (Population III; Pop III) stars. The Pop III GRBs could be super-energetic with the isotropic energy up to E(iso) greater than or similar to 10(55-57) erg, providing a unique probe of the high-redshift Universe. Methods. We consider both the so-called Pop III.1 stars (primordial) and Pop III.2 stars (primordial but affected by radiation from other stars). We employ a semi-analytical approach that considers inhomogeneous hydrogen reionization and chemical evolution of the intergalactic medium. Results. We show that Pop III.2 GRBs occur more than 100 times more frequently than Pop III.1 GRBs, and thus should be suitable targets for future GRB missions. Interestingly, our optimistic model predicts an event rate that is already constrained by the current radio transient searches. We expect similar to 10-10(4) radio afterglows above similar to 0.3 mJy on the sky with similar to 1 year variability and mostly without GRBs (orphans), which are detectable by ALMA, EVLA, LOFAR, and SKA, while we expect to observe maximum of N < 20 GRBs per year integrated over at z > 6 for Pop III.2 and N < 0.08 per year integrated over at z > 10 for Pop III.1 with EXIST, and N < 0.2 for Pop III.2 GRBs per year integrated over at z > 6 with Swift.
Resumo:
LipL32 is a major surface protein that is expressed during infection by pathogenic Leptospira. Here, the crystallization of recombinant LipL32(21-272), which corresponds to the mature LipL32 protein minus its N-terminal lipid-anchored cysteine residue, is described. Selenomethionine-labelled LipL32(21-272) crystals diffracted to 2.25 angstrom resolution at a synchrotron source. The space group was P3(1)21 or P3(2)21 and the unit-cell parameters were a = b = 126.7, c = 96.0 angstrom.
Resumo:
We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches-a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493241]
Resumo:
The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.