986 resultados para Cretaceous Sediments
Resumo:
ODP Leg 119 drilled 11 sites on the Kerguelen Plateau (southern Indian Ocean) and Prydz Bay (East Antarctica). Upper Pliocene through Quaternary sediments were recovered at Site 736 on the northern Kerguelen Plateau; calcareous nannofossils occurred in only a few samples. Over 700 m of middle Eocene through Quaternary sediments was cored at Site 737 on the northern Kerguelen Plateau, and calcareous nannofossils are abundant in the middle Eocene through the middle Miocene sediments. Nearly 500 m of sediments ranging from the lower Turanian to the Quaternary was recovered at Site 738 on the southern Kerguelen Plateau; calcareous nannofossils are abundant from the Miocene downward. Calcareous nannofossils are also abundant in the upper Eocene through Miocene section from Site 744 on the southern Kerguelen Plateau. Except for Core 119-746A-13H, the Neogene sequences drilled at deep-water Sites 745 and 746 off the southern Kerguelen Plateau are devoid of calcareous nannofossils. Occurrences of calcareous nannofossils were generally rare and sporadic at Sites 739 and 742 in Prydz Bay and suggest that the diamictite sequences recovered is as old as middle Eocene-early Oligocene age. Other sites drilled in Prydz Bay (Sites 740, 741, and 743) did not yield calcareous nannofossils. Species diversity of calcareous nannofossils was low (about a dozen) in the southern Indian Ocean in the Late Cretaceous. High-latitude nanno floral characteristics are apparent after the Cretaceous/Tertiary boundary extinctions. Cold climatic conditions limited Oligocene calcareous nannofossil assemblages to fewer than a dozen species, and extinctions of species generally were not compensated by originations of new species. Only a few species of calcareous nannofossils were found in the Miocene sequences, in which Coccolithuspelagicus and one or two species of Reticulofenestra exhibit extreme (0%-100%) fluctuations in assemblage dominance, and these fluctuations may reflect rapid fluctuations in the surface-water temperatures. Further deterioration of climate in the late Neogene essentially excluded calcareous nannoplankton from the Southern Ocean. Significantly warmer water conditions during part of the early-middle Pleistocene were inferred by a few lower-middle Pleistocene calcareous nannofossil species found on the Kerguelen Plateau. The calcareous nannofossil zonation of Roth (1978 doi:10.2973/dsdp.proc.44.134.1978) can be applied to the Upper Cretaceous section recovered at Site 738, and the zonation of Okada and Bukry (1980 doi:10.1016/0377-8398(80)90016-X) can be applied without much difficulty to the Paleocene to middle Eocene sequences from the Kerguelen Plateau. However, some conventional upper Paleogene markers are not useful for southern high latitudes, whereas a few nonconventional species events are useful for subdividing the upper Paleogene sequences. The latter species events include the first occurrence (FO) of Reticulofenestra reticulata, the FO and last occurrence (LO) of Reticulofenestra oamaruensis, the LO of Isthmolithus recurvus, and the LO of Chiasmolithus altus. As the Neogene sequences from the southern Indian Ocean contain only a few long-ranging, cold-water species, or are devoid of coccoliths, calcareous nannofossil zonations remain virtually unworkable for the Neogene in the high-latitude southern Indian Ocean as in other sectors of the Southern Ocean.
Resumo:
In central Antarctica, drainage today and earlier back to the Paleozoic radiates from the Gamburtsev Subglacial Mountains (GSM). Proximal to the GSM past the Permian-Triassic fluvial sandstones in the Prince Charles Mountains (PCM) are Cretaceous, Eocene, and Pleistocene sediment in Prydz Bay (ODP741, 1166, and 1167) and pre-Holocene sediment in AM04 beneath the Amery Ice Shelf. We analysed detrital zircons for U-Pb ages, Hf-isotope compositions, and trace elements to determine the age, rock type, source of the host magma, and "crustal" model age (T(C)DM). These samples, together with others downslope from the GSM and the Vostok Subglacial Highlands (VSH), define major clusters of detrital zircons interpreted as coming from (1) 700 to 460 Ma mafic granitoids and alkaline rock, epsilon-Hf 9 to -28, signifying derivation 2.5 to 1.3 Ga from fertile and recycled crust, and (2) 1200-900 Ma mafic granitoids and alkaline rock, epsilon-Hf 11 to -28, signifying derivation 1.8 to 1.3 Ga from fertile and recycled crust. Minor clusters extend to 3350 Ma. Similar detrital zircons in Permian-Triassic, Ordovician, Cambrian, and Neoproterozoic sandstones located along the PaleoPacific margin of East Antarctica and southeast Australia further downslope from central Antarctica reflect the upslope GSM-VSH nucleus of the central Antarctic provenance as a complex of 1200-900 Ma (Grenville) mafic granitoids and alkaline rocks and older rocks embedded in 700-460 Ma (Pan-Gondwanaland) fold belts. The wider central Antarctic provenance (CAP) is tentatively divided into a central sector with negative ?Hf in its 1200-900 Ma rocks bounded on either side by positive epsilon-Hf. The high ground of the GSM-VSH in the Permian and later to the present day is attributed to crustal shortening by far-field stress during the 320 Ma mid-Carboniferous collision of Gondwanaland and Laurussia. Earlier uplifts in the ~500 Ma Cambrian possibly followed the 700-500 Ma assembly of Gondwanaland, and in the Neoproterozoic the 1000-900 Ma collisional events in the Eastern Ghats-Rayner Province at the end of the 1300-1000 Ma assembly of Rodinia.
Resumo:
Carbonate-free portions of Upper Cretaceous to Holocene sediment samples from the Kerguelen Plateau in the southern Indian Ocean were investigated by X-ray diffraction. Downhole variations in the content of opal-A, opal-CT, quartz, feldspar, barite, and clinoptilolite were studied at Site 737 on the northern Kerguelen Plateau and at Sites 744 and 738 on the southern Kerguelen Plateau. The variation of these components reflects temporal changes in the depositional history of the Kerguelen Plateau as well as major differences in the sedimentary evolution between the northern plateau and the southern plateau. Carbonate is the dominant component in the pelagic sediments on the Kerguelen Plateau. In addition, biogenic opal sedimentation plays an important role throughout most of the sequence. A major increase in opal accumulation is documented at all sites in late Miocene time, which is in accordance with the well-known increase in silica productivity probably caused by a major cooling step. Because of its position near the Polar Frontal Zone, sediments from Site 737 show a more extensive opal deposition than at Sites 744 and 738. An earlier productivity pulse is documented at Site 744 on the southern plateau within the early Oligocene, following the initial phase of intense East Antarctic glaciation. This cooling event resulted in higher amounts of ice-rafted terrigenous quartz and, to a lesser extent, feldspar. With the exception of the Site 744 sediments, opal deposition in Paleogene and older sediments can be reconstructed only from the diagenetic transformation products of opal-CT and probably clinoptilolite. In contrast to the southern sequence, on the northern Kerguelen Plateau higher amounts of clinoptilolite and no opal-CT were found. These major differences in the diagenetic environments may be due to extensive volcanism in the northern area. The volcanic influence at Site 737 is well recorded by the higher feldspar content and higher amounts of volcanic glass shards.
Resumo:
Siderophilic element concentrations are high in sediments from the Cretaceous-Tertiary boundary. An extraterrestrial source is indicated. Concentrations are too high to be understood in terms of the impact of a chondritic asteroid. Either the projectile was a metal-sulphide core or the infalling material (probably weak cometary matter) was slowed down during atmospheric passage.
Resumo:
Lower Campanian to middle Eocene chalks and oozes were recovered at Sites 761 and 762 of Ocean Drilling Program Leg 122 on the Exmouth Plateau, northwest Australia. Paleomagnetic analyses were made on 125 samples from Hole 761B and 367 samples from Hole 762C. Thermal cleaning, alternating field demagnetization, or mixed treatment reveals a stable remanent component of normal or reversed polarity. Correlation of the magnetic polarity sequences established for these holes with the standard magnetic polarity time scale was aided by nannofossil zonation. At Hole 761B, the sequence extends from Subchron C32-N (upper Campanian) through Subchron C17-R (middle Eocene), but given the low sedimentation rate, not all the subchrons of the standard magnetic polarity sequence were recognized. The sequence at Hole 762C extends from Subchron C13-R (middle Eocene) to the boundary between Chrons C33 and C34 (lower Campanian). The sedimentation rate is higher at Hole 762C, and all the magnetic polarity subchrons of the Campanian and Maestrichtian stages were identified. Thus, this hole could be a reference section to refine the Upper Cretaceous time scale.
Resumo:
Perylene is present in high concentration in Paleogene sediments from the Sanriku-oki borehole of the Ministry of International Trade and Industry (MITI), northeastern Japan. The borehole penetrates a thick sequence of Late Cretaceous to Neogene sediments deposited under a range of conditions, including fluvial-deltaic and shallow marine. Organic petrological and geochemical data show the sediments to be rich in organic matter (OM) derived from higher plants. Biomarker analysis of aliphatic and aromatic hydrocarbons confirms a significant input from higher plants, with extracts dominated by numerous gymnosperm- and angiosperm-derived biomarkers such as diterpanes, oleanenes, des-A-triterpanes and their aromatized counterparts. The highest concentration of perylene occurs in Middle Eocene sediments deposited in a relatively reducing environment. Stable carbon isotope compositions show 13C enrichment in perylene compared to gymnosperm and angiosperm biomarkers, consistent with a fungal origin. This elevated abundance of sedimentary perylene could relate to a Paleogene continental climate where fungi probably flourished.
Resumo:
Stable isotopic records across the Cretaceous/Paleogene (K/P) boundary in Maud Rise Holes 689B and 690C indicate that significant climatic changes occurred during the latest Cretaceous, beginning approximately 500 k.y. prior to the mass extinction event and the enrichment of iridium at the K/P boundary (66.4 Ma). An oxygen isotopic decrease of ~0.7 per mil - ~1.0 per mil is recorded in the Late Cretaceous planktonic and benthic foraminifers between 66.9 and 66.6 Ma. The negative isotope excursion was followed by a positive excursion of similar magnitude between 66.6 Ma (latest Cretaceous) and ~66.3 Ma (earliest Paleocene). No other isotopic excursions of this magnitude are recorded in the planktonic and benthic microfossil records 1.0 m.y prior to, and for 2.0 m.y following the mass extinction event at the K/P boundary. The magnitude and duration of these isotopic excursions were similar to those at the Paleocene/Eocene and Eocene/Oligocene boundaries. A major d13C excursion occurred 200 k.y. prior to the boundary, involving a positive shift in planktonic and benthic d13C of ~0.5 per mil - 0.75 per mil. Similar changes observed in other deep-sea sequences indicate that this reflected a global change in d13C of the oceanic total dissolved carbon (TDC) reservoir. The magnitude of this inferred carbon reservoir change and its association with high latitude surface-water temperature changes recorded in the d18O records implies that it was linked to global climate change through feedback loops in the carbon cycle. At the K/P boundary, the surface-to-deep water d13C gradient is reduced by approximately 0.6 per mil - ~0.2 per mil. However, unlike sequences elsewhere, the planktonic-benthic d13C gradient (Delta d13C) was not eliminated in the Antarctic. The surface-to-deep water gradient was re-established gradually during the 400 k.y. following the mass extinction. Full recovery of the Delta d13C occurred by ~60.0 Ma. In addition to the reduced vertical d13C gradient across the K/P boundary, there was a negative excursion in both planktonic and benthic d13C beginning approximately 100 k.y. after the boundary (66.3 Ma). This excursion resulted in benthic d13C values in the early Paleogene that were similar to those in the pre-K/P boundary intervals. This negative shift appears to reflect a change in the d13C of the oceanic TDC reservoir shift that may have resulted from reduced carbon burial and/or increased carbon flux to the oceans. Any model that attempts to explain the demise of the oceanic plankton at the end of the Cretaceous should consider the oceanic environmental changes that were occurring prior to the massive extinction event.