952 resultados para Cotton boll.
Resumo:
Soil columns were produced by filling PVC tubes with a Dark Red Latosol (Acrortox, 22% of clay). A compacted layer was established at the depth of 15 cm in the columns. In the compacted layer, soil was packed to 1.13, 1.32, 1.48, and 1.82 Mg kg(-1), resulting in cone resistances of 0.18, 0.43, 1.20, and 2.50 MPa. Cotton was cropped for 30 days. Lime was applied to raise base saturation to 40, 52, and 67%. The highest base saturation caused a decrease in phosphorus (P) and zinc (Zn) concentrations in the plants. A decrease in root dry matter, length and surface area was also observed. This could be a consequence of lime induced Zn deficiency. Root growth was decreased in the compacted layer, and complete inhibition was noticed at 2.50 MPa. Once the roots got through the compacted layer, there was a growth recovery in the bottom layer of the pots. The increase in base saturation up 52% was effective in preventing a decrease in cotton root length at soil resistances to 1.20 MPa. Where the roots were shorter, there was an increase in nutrient uptake per unit of root surface area, which kept the plants well nourished, except for P.
Resumo:
Natural predation first instar larvae of the cotton leafworm (CLW) A. argillacea was studied in cotton fields in Jaboticabal, São Paulo State, Brazil, during 1986. The presence of naturally occurring arthropod predators showed a first instar larvae predation rate of 78.6 and 88.9% after 24 h and 48 h of exposure, respectively. A predator prey ratio of 1 : 1 (1 CLW key predator per 1 prey/plant) maintained a level of no more than 1 CLW small larvae per plant. The most evident arthropod predators in the studied fields were: beetles (Coleoptera: Coccinellidae), ants Pheidole sp. and Conomyrma sp.; Dermaptera Doru lineare (Eschs); Hemiptera Geocoris sp., and Orius insidiosus Say; and the spiders Theridion volubile, Chrysso pulcherrima, Misumenops sp., Chiracanthium sp., and Oxyopes salticus Hentz.
Resumo:
The effect of boron (B) on cotton growth and fruit shedding may be due not only to physiological or biochemical effects, but also to vascular tissue malformation. This experiment investigated petiole and floral peduncle anatomical alterations and growth of cotton supplied with deficient and sufficient B in nutrient solution. Cotton (Gossypium hirsutum cv. 'Delta Opal') plants were grown in solutions containing 0, 1.5, 3.0, 4.5, and 6.0 mu mol L-1 of B from 22 to 36 d after plant emergence (DAPE). From 36 to 51 DAPE, B was omitted from the nutrient solution. Petioles from young leaves and floral bud peduncles (first position of the first sympodial) were sampled and the cross-section anatomy observed under an optical microscope. The number of vascular bundles of the petiole was decreased in B-deficient plants and the xylem was disorganized. Phloem elements in the peduncle vascular cylinder of B-deficient plants did not show clear differentiation. The few xylem elements that were formed were also disorganized. Modifications caused by B deficiency may have impaired B and photosynthate translocation into new cotton growth. Boron accumulation in the shoot of B-deficient plants suggested that there was some B translocation within the plant. It could be inferred that cotton growth would be impaired by the decrease in carbohydrate translocation rather than by B deficiency in the tissue alone.
Resumo:
Currently, the cultivation of the cotton plant is based on a scale production model, characterized by high yields and intensive use of fertilizers, agrochemicals and mechanization. The objective of this study was to evaluate the influence of different row spacings on cotton crops, with or without growth regulator, and their effects in crop development and yield. The experimental design was in completely randomized blocks, in a 3x3 factorial scheme with 4 replications, using three row spacings: 0.45, 0.70 and 0.90 m. Three growth regulator conditions were tested: a) application split into four stages, b) single application at 70 d.a.e, and c) no regulator application. The project was conducted in the city of Selviria, Mato Grosso do Sul state, in November 2005. It was verified that the application of growth regulator is efficient in the limitation of plant height. The highest yield and boll mass was found in the split application of the regulator. The number of bolls and reproductive branches per plant was higher in the wider row spacings.
Resumo:
The experiment was carried out in 1993/94, in Jaboticabal, São Paulo State, Brazil, to verify the efficiency of plant growth regulators on agronomic characteristics of cotton and as pest control technique. The experimental design was a complete randomized block with four replications and seven treatments: 1) control; 2) ethephon + cyclanilide (720 + 90 g/ha a.i.); 3) ethephon + cyclanilide (960 + 120 g/ha a.i.); 4) ethephon + cyclanilide (1200 + 150 g/ha a.i.); 5) ethephon (960 g/ha a.i.); 6) ethephon (1200 g/ha a.i.) and 7) cyclanilide 150 g/ha a.i.). Results suggest that plant growth regulators can reduce harvest time in 15 days, contributing significantly to decreased late-season squares and immature bolls that serve as feeding and oviposition sites to boll weevils and pink bollworm.
Resumo:
In order to study the efficiency of aldicarb against aphids, beneficial arthropods, and on cotton physiology, a trial was made at Jaboticabal, SP, Brazil, in 1992/93. The experimental design was a complete randomized block with seven replications and three treatments: 1) aldicarb 750 g of a.i./ha; 2) aldicarb 1050 g of a.i./ha; and 3) control. The results showed that aldicarb was effective in the control of aphids. Aldicarb applied in the furrow significantly increased boll number per plant, yield, and precociousness. The beneficial arthropods were not affected.
Resumo:
The objective of the present work was to evaluate the effect of the growth regulator chlorocholine chloride (CCC) in the control of the boll weevil (Anthonomus grandis Boheman) on cotton ( Gossypium hirsutum L. ). The experiment was conducted at the Experimental Farm of the Faculdade de Ciências Agrárias e Veterinárias (UNESP), Jaboticabal Campus, State of São Paulo, Brazil, during the 1988/1989 growing season. The experimental design used was the latin square. The chlorocholine chloride was sprayed on the cv IAC-19 cotton plants 70 days after emergence in the doses of 0, 25, 50, and 100 g/ha in a single application as well as 25 g/ha + 25 g/ha in two applications. The second application was 15 days after the first. There was no significant differences on cotton yield. Although the split application as well as the single application of 25 g/ha increased yield in 11.6% and 11.5%, respectively.These same treatments also increased earliness. After the last hand harvest the number of immature cotton bolls left in the field was 64.5% lower in the plots treated with chlorocholine chloride. Despite the higher earliness and the reduction of the number of immature cotton bolls, the chlorocholine chloride treatments were not sufficient to induce an effective aid in the boll weevil control but indicates a possibility of using growth regulators in the cotton crop as an auxilary strategy in integrate pest management programs.
Resumo:
Toxic levels of Al and low availability of Ca have been shown to decrease root growth, which can also be affected by P availability. In the current experiment, initial plant growth and nutrition of cotton (Gossypium hirsutum var. Latifolia) were studied as related to its root growth in response to phosphorus and lime application. The experiment was conducted in Botucatu, Sao Paulo, Brazil, in pots containing a Dark Red Latosol (Acrortox, 20% clay, 72% sand). Lime was applied at 0.56, 1.12 and 1.68 g kg -1 and phosphorus was applied at 50, 100 and 150 mg kg -1. Two cotton (cv. IAC 22) plants were grown per pot for up to 42 days after plant emergence. There was no effect of liming on shoot dry weight, root dry matter yield, root surface and length, but root diameter was decreased with the increase in soil Ca. Shoot dry weight, as well as root length, surface and dry weight were increased with soil P levels up to 83 mg kg -1. Phosphorus concentration in the shoots was increased from 1.6 to 3.0 g kg -1 when soil P was increased from 14 to 34 mg kg -1. No further increases in P concentration were observed with higher P rates. The shoot/root ratio was also increased with P application as well as the amount of nutrients absorbed per unit of root surface. In low soil P soils the transport of the nutrient to the cotton root surface limits P uptake. In this case an increase in root growth rate due to P fertilisation does not compensate for the low P diffusion in the soil.
Resumo:
The knowledge of nutrient mobility is an important tool to define the best fertilizer management and diagnosis techniques. Patterns of boron (B) mobility in plants have been reviewed, but there is very little information on B distribution and mobility in cotton. An experiment was conducted to study plant growth and B distribution in cotton when the nutrient was applied in the nutrient solution or to the leaves, and when a temporary deficiency was imposed. Cotton (Gossypium hirsutum, Latifolia, cv. IAC 22) was grown in nutrient solutions where B was omitted or not for 15 days. Boron was applied to young or mature cotton leaves in some of the minus B treatments. Root growth decreased when the plants were transferred to B solutions, but there was a full recovery when B was replaced in the nutrient medium. Boron deficiency, even when temporary, reduced cotton shoot dry matter yields, plant height and flower and fruit set, and these could not be prevented by foliar application of B. Because of decreased dry matter production, leaves of deficient cotton plants actually showed higher B concentrations than non deficient leaves. This would be misleading when a mature leaf is sampled for diagnosis. If there is any B mobility in cotton phloem, it is very low.
Resumo:
The present work was conducted in Selvíria county (MS-Brazil), in the agricultural year of 1998/99, for evaluating nitrogen and potassium foliar application to supplement sowing fertilization on cotton (IAC 22) crop. A randomized complete block design with 13 treatments and four replications was used. The treatments were constituted by a control (without foliar application) and nitrogen and/or potassium foliar applications two, four, six or eight weeks after beginning of flowering. The urea was used as source of N and potassium chloride as source of K. Urea in the concentration of 10% and potassium chloride at 4% were applied at a rate of 250 L.ha-1. Height of plants, nodule number, number of reproductive branches, boll per plant, 30 boll mass, yield and fiber percentage were evaluated. It is concluded that the N doses increased the yield and decreased the fiber percentage. There was no evaluated response to the application of K or NK.
Resumo:
Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.
Resumo:
The cotton disease known as angular leaf spot, caused by Xanthomonas axonopodis pv. malvacearum (Xam) has been causing cotton losses in several producing regions around the world. Xam is transmitted by seeds, which may be infected both externally and internally. Infected seeds constitute the main long-distance dissemination mode of the pathogen. In view of this, the use of healthy seeds is a must. To accomplish that, detection methodologies for the bacteria must be developed be used in seed health analysis laboratories. This study aimed to develop a semi-selective medium for Xam detection in cotton seeds. The semi-selective culture medium was named MSSXAN and it was consisted of peptone (5.0 g), beef extract (3 g), sucrose (5 g), soluble starch (10 g), agar (15 g), CaCl 2 (0.25 g), Tween 80 (10 mL), distilled water (1,000 mL), crystal violet solution at 1% (150 μL), cephalexin (50 mg 1*), methyl thyophanate (10 mg*) and chlorothalonil (10 mg*) - *added after culture medium autoclaving. This MSSXAN medium shows low repressiveness to Xam and it be used for isolation of this bacteria in cotton seeds health analysis. © 2009 Academic Journals Inc.