979 resultados para Contraction homogeneity
Resumo:
The potential use of the solvothermal extraction (SE) as a preliminary step to calcination for detemplating SBA-15 mesophases is investigated; aiming to reduce the amount of organics to be burnt and thereby the corresponding structural shrinkage. A systematic study was carried out by soxhlet extraction on mesophases hydrothermally aged between 90 and 130 C. The mesophases containing variable amounts of template were then treated by calcination or pyrolysis/calcination. TGA was applied to quantify the template amount after the various treatments. The as obtained materials were characterized by SAXS and Ar ad/desorption for structural and textural information while 1H NMR gave information about the integrity of the as-recycled template. The study shows that solvothermal conditions remove considerably the template, typically from 50 to 10-20 wt.%, mainly extracted from the primary mesopores. Possible reuse of the extracted template is questionable as it is poor in polyethyleneoxide compared to the synthesis block-copolymer, Pluronic P123. For all thermal protocols applied (direct calcination, calcination after solvent-extraction or pyrolysis/calcination after solvent extraction), the thermal shrinkage decreases with the aging temperature; that is consistent with the condensation degree of the silica. For each mesophase, it was found that the thermal shrinkage becomes less pronounced when the material is fully templated; thus the template can serve as structural support or can control the mass transfer of O2 and thereby the oxidation rate of the template burning. © 2013 Elsevier Inc. All rights reserved.
Resumo:
The Cu-Al2O3 composite ceramic combines the phase of alumina, which is extremely hard and durable, yet very brittle, to metallic copper phase high ductility and high fracture toughness. These characteristics make this material a strong candidate for use as a cutting tool. Al2O3-Cu composite powders nanocrystalline and high homogeneity can be produced by high energy milling, as well as dense and better mechanical structures can be obtained by liquid phase sintering. This work investigates the effect of high-energy milling the dispersion phase Al2O3, Cu, and the influence of the content of Cu in the formation of Cu-Al2O3 composite particles. A planetary mill Pulverisatte 7 high energy was used to perform the experiments grinding. Al2O3 powder and Cu in the proportion of 5, 10 and 15% by weight of Cu were placed in a container for grinding with balls of hard metal and ethyl alcohol. A mass ratio of balls to powder of 1:5 was used. All powders were milled to 100 hours, and powder samples were collected after 2, 10, 20, 50 and 70 hours of grinding. Composite powders with compact cylindrical shape of 8 mm diameter were pressed and sintered in uniaxial matrix resistive furnace to 1200, 1300 to 1350 °C for 60 minutes under an atmosphere of argon and hydrogen. The heating rate used was 10°C/min. The powders and structures of the sintered bodies were characterized by XRD, SEM and EDS. Analysis TG, DSC and particle size were also used to characterize the milled powders, as well as dilatometry was used to observe the contraction of the sintered bodies. The density of the green and sintered bodies was measured using the geometric method (mass / volume). Vickers microhardness with a load of 500 g for 10 s were performed on sintered structures. The Cu-Al2O3 composite with 5% copper density reached 61% of theoretical density and a hardness of 129 HV when sintered at 1300 ° C for 1h. In contrast, lower densities (59 and 51% of the theoretical density) and hardness (110 HV and 105) were achieved when the copper content increases to 10 and 15%.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.
In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.
In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.
In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.
In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.
Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Das Verfahren der Lebensmitteltrocknung wird häufig angewendet, um ein Produkt für längere Zeit haltbar zu machen. Obst und Gemüse sind aufgrund ihres hohen Wassergehalts leicht verderblich durch biochemische Vorgänge innerhalb des Produktes, nicht sachgemäße Lagerung und unzureichende Transportmöglichkeiten. Um solche Verluste zu vermeiden wird die direkte Trocknung eingesetzt, welche die älteste Methode zum langfristigen haltbarmachen ist. Diese Methode ist jedoch veraltet und kann den heutigen Herausforderungen nicht gerecht werden. In der vorliegenden Arbeit wurde ein neuer Chargentrockner, mit diagonalem Luftstömungskanal entlang der Länge des Trocknungsraumes und ohne Leitbleche entwickelt. Neben dem unbestreitbaren Nutzen der Verwendung von Leitblechen, erhöhen diese jedoch die Konstruktionskosten und führen auch zu einer Erhöhung des Druckverlustes. Dadurch wird im Trocknungsprozess mehr Energie verbraucht. Um eine räumlich gleichmäßige Trocknung ohne Leitbleche zu erreichen, wurden die Lebensmittelbehälter diagonal entlang der Länge des Trockners platziert. Das vorrangige Ziel des diagonalen Kanals war, die einströmende, warme Luft gleichmäßig auf das gesamte Produkt auszurichten. Die Simulation des Luftstroms wurde mit ANSYS-Fluent in der ANSYS Workbench Plattform durchgeführt. Zwei verschiedene Geometrien der Trocknungskammer, diagonal und nicht diagonal, wurden modelliert und die Ergebnisse für eine gleichmäßige Luftverteilung aus dem diagonalen Luftströmungsdesign erhalten. Es wurde eine Reihe von Experimenten durchgeführt, um das Design zu bewerten. Kartoffelscheiben dienten als Trocknungsgut. Die statistischen Ergebnisse zeigen einen guten Korrelationskoeffizienten für die Luftstromverteilung (87,09%) zwischen dem durchschnittlich vorhergesagten und der durchschnittlichen gemessenen Strömungsgeschwindigkeit. Um den Effekt der gleichmäßigen Luftverteilung auf die Veränderung der Qualität zu bewerten, wurde die Farbe des Produktes, entlang der gesamten Länge der Trocknungskammer kontaktfrei im on-line-Verfahren bestimmt. Zu diesem Zweck wurde eine Imaging-Box, bestehend aus Kamera und Beleuchtung entwickelt. Räumliche Unterschiede dieses Qualitätsparameters wurden als Kriterium gewählt, um die gleichmäßige Trocknungsqualität in der Trocknungskammer zu bewerten. Entscheidend beim Lebensmittel-Chargentrockner ist sein Energieverbrauch. Dafür wurden thermodynamische Analysen des Trockners durchgeführt. Die Energieeffizienz des Systems wurde unter den gewählten Trocknungsbedingungen mit 50,16% kalkuliert. Die durchschnittlich genutzten Energie in Form von Elektrizität zur Herstellung von 1kg getrockneter Kartoffeln wurde mit weniger als 16,24 MJ/kg und weniger als 4,78 MJ/kg Wasser zum verdampfen bei einer sehr hohen Temperatur von jeweils 65°C und Scheibendicken von 5mm kalkuliert. Die Energie- und Exergieanalysen für diagonale Chargentrockner wurden zudem mit denen anderer Chargentrockner verglichen. Die Auswahl von Trocknungstemperatur, Massenflussrate der Trocknungsluft, Trocknerkapazität und Heiztyp sind die wichtigen Parameter zur Bewertung der genutzten Energie von Chargentrocknern. Die Entwicklung des diagonalen Chargentrockners ist eine nützliche und effektive Möglichkeit um dei Trocknungshomogenität zu erhöhen. Das Design erlaubt es, das gesamte Produkt in der Trocknungskammer gleichmäßigen Luftverhältnissen auszusetzen, statt die Luft von einer Horde zur nächsten zu leiten.
Resumo:
We show here that a physical activation process that is diffusion-controlled yields an activated carbon whose chemistry – both elemental and functional – varies radially through the particles. For the ∼100 μm particles considered here, diffusion-controlled activation in CO2 at 800 °C saw a halving in the oxygen concentration from the particle periphery to its center. It was also observed that this activation process leads to an increase in keto and quinone groups from the particle periphery towards the center and the inverse for other carbonyls as well as ether and hydroxyl groups, suggesting the two are formed under CO2-poor and -rich environments, respectively. In contrast to these observations, use of physical activation processes where diffusion-control is absent are shown to yield carbons whose chemistry is radially invariant. This suggests that a non-diffusion limited activation processes should be used if the performance of a carbon is dependent on having a specific optimal pore surface chemical composition.
Resumo:
Envenoming by the pitviper Bothrops jararacussu produces cardiovascular alterations, including coagulopathy, systemic hemorrhage, hypotension, circulatory shock and renal failure. In this work, we examined the activity of this venom in rat isolated right atria. Incubation with venom (0.025, 0.05, 0.1 and 0.2mg/ml) caused concentration-dependent muscle contracture that was not reversed by washing. Muscle damage was seen histologically and confirmed by quantification of creatine kinase-MB (CK-MB) release. Heating and preincubation of venom with p-bromophenacyl bromide (a phospholipase A2 inhibitor) abolished the venom-induced contracture and muscle damage. In contrast, indomethacin, a non-selective inhibitor of cyclooxygenase, and verapamil, a voltage-gated Ca(2+) channel blocker, did not affect the responses to venom. Preincubation of venom with Bothrops or Bothrops/Crotalus antivenom or the addition of antivenom soon after venom attenuated the venom-induced changes in atrial function and tissue damage. These results indicate that B. jararacussu venom adversely affected rat atrial contractile activity and muscle organization through the action of venom PLA2; these venom-induced alterations were attenuated by antivenom.
Resumo:
Muscle strength and functional independence are considered to be determinants of frailty levels among elderly people. The aim here was to compare lower-limb muscle strength (LLMS) with functional independence in relation to sex, age and number of frailty criteria, and to ascertain the influence of these variables on elderly outpatients' independence. Quantitative cross-sectional study, in a tertiary hospital. The study was conducted on 150 elderly outpatients of both sexes who were in a cognitive condition allowing oral communication, between October 2005 and October 2007. The following instruments were used: five-times sit-to-stand test (FTSST), Functional Independence Measurement (FIM) and Lawton's Instrumental Activities of Daily Living Scale (IADL). Descriptive, comparative, multivariate, univariate and Cronbach alpha analyses were performed. The mean time taken in the FTSST was 21.7 seconds; the mean score for FIM was 82.2 and for IADL was 21.2; 44.7% of the subjects presented 1-2 frailty criteria and 55.3% > 3 criteria. There was a significant association between LLMS and functional independence in relation to the number of frailty criteria, without homogeneity regarding sex and age. Functional independence showed significant influence from sex and LLMS. Elderly individuals with 1 or 2 frailty criteria presented greater independence in all FTSST scores. The subjects with higher LLMS presented better functional independence.
Resumo:
A monomeric basic PLA2 (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA2 enzyme class and displays conserved domains as the catalytic network, Ca2+-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA2 showed an allosteric behavior and its enzymatic activity was dependent on Ca2+. Examination of PhTX-II PLA2 by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA2 causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA2 that contributes with toxic actions caused by P. hyoprora venom.
Resumo:
Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25-30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM-30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation.
Resumo:
In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.