952 resultados para Contour Integration, Psychophysics, Humans, Object Recognition, Cue Summation
Resumo:
Learning and memory in adult females decline during menopause and estrogen replacement therapy is commonly prescribed during menopause. Post-menopausal women tend to suffer from depression and are prescribed antidepressants – in addition to hormone therapy. Estrogen replacement therapy is a topic that engenders debate since several studies contradict its efficacy as a palliative therapy for cognitive decline and neurodegenerative diseases. Signaling transduction pathways can alter brain cell activity, survival, and morphology by facilitating transcription factor DNA binding and protein production. The steroidal hormone estrogen and the anti-depressant drug lithium interact through these signaling transduction pathways facilitating transcription factor activation. The paucity of data on how combined hormones and antidepressants interact in regulating gene expression led me to hypothesize that in primary mixed brain cell cultures, combined 17β-estradiol (E2) and lithium chloride (LiCl) (E2/LiCl) will alter genetic expression of markers involved in synaptic plasticity and neuroprotection. Results from these studies indicated that a 48 h treatment of E2/LiCl reduced glutamate receptor subunit genetic expression, but increased neurotrophic factor and estrogen receptor genetic expression. Combined treatment also failed to protect brain cell cultures from glutamate excitotoxicity. If lithium facilitates protein signaling pathways mediated by estrogen, can lithium alone serve as a palliative treatment for post-menopause? This question led me to hypothesize that in estrogen-deficient mice, lithium alone will increase episodic memory (tested via object recognition), and enhance expression in the brain of factors involved in anti-apoptosis, learning and memory. I used bilaterally ovariectomized (bOVX) C57BL/6J mice treated with LiCl for one month. Results indicated that LiCl-treated bOVX mice increased performance in object recognition compared with non-treated bOVX. Increased performance in LiCl-treated bOVX mice coincided with augmented genetic and protein expression in the brain. Understanding the molecular pathways of estrogen will assist in identifying a palliative therapy for menopause-related dementia, and lithium may serve this purpose by acting as a selective estrogen-mediated signaling modulator.
Resumo:
Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.
Resumo:
Given the importance of color processing in computer vision and computer graphics, estimating and rendering illumination spectral reflectance of image scenes is important to advance the capability of a large class of applications such as scene reconstruction, rendering, surface segmentation, object recognition, and reflectance estimation. Consequently, this dissertation proposes effective methods for reflection components separation and rendering in single scene images. Based on the dichromatic reflectance model, a novel decomposition technique, named the Mean-Shift Decomposition (MSD) method, is introduced to separate the specular from diffuse reflectance components. This technique provides a direct access to surface shape information through diffuse shading pixel isolation. More importantly, this process does not require any local color segmentation process, which differs from the traditional methods that operate by aggregating color information along each image plane. ^ Exploiting the merits of the MSD method, a scene illumination rendering technique is designed to estimate the relative contributing specular reflectance attributes of a scene image. The image feature subset targeted provides a direct access to the surface illumination information, while a newly introduced efficient rendering method reshapes the dynamic range distribution of the specular reflectance components over each image color channel. This image enhancement technique renders the scene illumination reflection effectively without altering the scene’s surface diffuse attributes contributing to realistic rendering effects. ^ As an ancillary contribution, an effective color constancy algorithm based on the dichromatic reflectance model was also developed. This algorithm selects image highlights in order to extract the prominent surface reflectance that reproduces the exact illumination chromaticity. This evaluation is presented using a novel voting scheme technique based on histogram analysis. ^ In each of the three main contributions, empirical evaluations were performed on synthetic and real-world image scenes taken from three different color image datasets. The experimental results show over 90% accuracy in illumination estimation contributing to near real world illumination rendering effects. ^
Resumo:
Learning and memory in adult females decline during menopause and estrogen replacement therapy is commonly prescribed during menopause. Post-menopausal women tend to suffer from depression and are prescribed antidepressants – in addition to hormone therapy. Estrogen replacement therapy is a topic that engenders debate since several studies contradict its efficacy as a palliative therapy for cognitive decline and neurodegenerative diseases. Signaling transduction pathways can alter brain cell activity, survival, and morphology by facilitating transcription factor DNA binding and protein production. The steroidal hormone estrogen and the anti-depressant drug lithium interact through these signaling transduction pathways facilitating transcription factor activation. The paucity of data on how combined hormones and antidepressants interact in regulating gene expression led me to hypothesize that in primary mixed brain cell cultures, combined 17beta-estradiol (E2) and lithium chloride (LiCl) (E2/LiCl) will alter genetic expression of markers involved in synaptic plasticity and neuroprotection. Results from these studies indicated that a 48 h treatment of E2/LiCl reduced glutamate receptor subunit genetic expression, but increased neurotrophic factor and estrogen receptor genetic expression. Combined treatment also failed to protect brain cell cultures from glutamate excitotoxicity. If lithium facilitates protein signaling pathways mediated by estrogen, can lithium alone serve as a palliative treatment for post-menopause? This question led me to hypothesize that in estrogen-deficient mice, lithium alone will increase episodic memory (tested via object recognition), and enhance expression in the brain of factors involved in anti-apoptosis, learning and memory. I used bilaterally ovariectomized (bOVX) C57BL/6J mice treated with LiCl for one month. Results indicated that LiCl-treated bOVX mice increased performance in object recognition compared with non-treated bOVX. Increased performance in LiCl-treated bOVX mice coincided with augmented genetic and protein expression in the brain. Understanding the molecular pathways of estrogen will assist in identifying a palliative therapy for menopause-related dementia, and lithium may serve this purpose by acting as a selective estrogen-mediated signaling modulator.
Resumo:
Learning and memory are important mechanism for species, since its allows to recognize conspecifics, routes and food place. Sleep is one of behaviors known by facilitate learning, it is a widespread phenomenon, present in most of vertebrates lives and highly investigated in many aspects. It is known that sleep deprivation modifies physiologic behavioral processes in animals, however, sleep function in organism is still debatable. Hypothesis range from energy conservation to memory consolidation, with different roles in animal’s evolution. The zebrafish (Danio rerio) emerg e in the last years as vertebrate model in genetics and developmental biology and quickly become popular in behavioral studies, as learning and memory. Despite the fact that zebrafish is a diurnal animal and have well characterized sleep behavior, zebrafish fish still has advantages due to its small size and low cost of maintenance, whichestablishes this species as interesting model for research on sleep. In this study we aimed to analyze the effects of partial and total sleep deprivation on learning acquisition, as well the concomitant administration of alcohol and melatonin. For this, the research was divided in three phases, each one with a different kind of conditioning: (1) object Recognition, (2) avoidance conditioning and (3) appetitive conditioning. The results showed the fish partially sleep deprived and totally sleep deprived + et hanol could perform the tasks just like the control group, however, fish totally sleep deprived and totally sleep deprived + melatonin showed impairments in attention and memory during the tests. Our results suggest that only one night of sleep deprivation is enough to harm the zebrafish performance in cognitive tasks. In addition, ethanol exposure on the night previously the test seems to suppress the negative effects of sleep deprivation, while the melatonin treatment seems not to be enough to promote sleep state, at least on the protocol applied here.
Resumo:
Learning and memory are important mechanism for species, since its allows to recognize conspecifics, routes and food place. Sleep is one of behaviors known by facilitate learning, it is a widespread phenomenon, present in most of vertebrates lives and highly investigated in many aspects. It is known that sleep deprivation modifies physiologic behavioral processes in animals, however, sleep function in organism is still debatable. Hypothesis range from energy conservation to memory consolidation, with different roles in animal’s evolution. The zebrafish (Danio rerio) emerg e in the last years as vertebrate model in genetics and developmental biology and quickly become popular in behavioral studies, as learning and memory. Despite the fact that zebrafish is a diurnal animal and have well characterized sleep behavior, zebrafish fish still has advantages due to its small size and low cost of maintenance, whichestablishes this species as interesting model for research on sleep. In this study we aimed to analyze the effects of partial and total sleep deprivation on learning acquisition, as well the concomitant administration of alcohol and melatonin. For this, the research was divided in three phases, each one with a different kind of conditioning: (1) object Recognition, (2) avoidance conditioning and (3) appetitive conditioning. The results showed the fish partially sleep deprived and totally sleep deprived + et hanol could perform the tasks just like the control group, however, fish totally sleep deprived and totally sleep deprived + melatonin showed impairments in attention and memory during the tests. Our results suggest that only one night of sleep deprivation is enough to harm the zebrafish performance in cognitive tasks. In addition, ethanol exposure on the night previously the test seems to suppress the negative effects of sleep deprivation, while the melatonin treatment seems not to be enough to promote sleep state, at least on the protocol applied here.
Resumo:
Nell'elaborato viene introdotto l'ambito della Computer Vision e come l'algoritmo SIFT si inserisce nel suo panorama. Viene inoltre descritto SIFT stesso, le varie fasi di cui si compone e un'applicazione al problema dell'object recognition. Infine viene presentata un'implementazione di SIFT in linguaggio Python creata per ottenere un'applicazione didattica interattiva e vengono mostrati esempi di questa applicazione.
Resumo:
The ontogeny of human empathy is better understood with reference to the evolutionary history of the social brain. Empathy has deep evolutionary, biochemical, and neurological underpinnings. Even the most advanced forms of empathy in humans are built on more basic forms and remain connected to core mechanisms associated with affective communication, social attachment, and parental care. In this paper, we argue that it is essential to consider empathy within a neurodevelopmental framework that recognizes both the continuities and changes in socioemotional understanding from infancy to adulthood. We bring together neuroevolutionary and developmental perspectives on the information processing and neural mechanisms underlying empathy and caring, and show that they are grounded in multiple interacting systems and processes. Moreover, empathy in humans is assisted by other abstract and domain-general high-level cognitive abilities such as executive functions, mentalizing and language, as well as the ability to differentiate another's mental states from one's own, which expand the range of behaviors that can be driven by empathy.
Resumo:
Notre système visuel extrait d'ordinaire l'information en basses fréquences spatiales (FS) avant celles en hautes FS. L'information globale extraite tôt peut ainsi activer des hypothèses sur l'identité de l'objet et guider l'extraction d'information plus fine spécifique par la suite. Dans les troubles du spectre autistique (TSA), toutefois, la perception des FS est atypique. De plus, la perception des individus atteints de TSA semble être moins influencée par leurs a priori et connaissances antérieures. Dans l'étude décrite dans le corps de ce mémoire, nous avions pour but de vérifier si l'a priori de traiter l'information des basses aux hautes FS était présent chez les individus atteints de TSA. Nous avons comparé le décours temporel de l'utilisation des FS chez des sujets neurotypiques et atteints de TSA en échantillonnant aléatoirement et exhaustivement l'espace temps x FS. Les sujets neurotypiques extrayaient les basses FS avant les plus hautes: nous avons ainsi pu répliquer le résultat de plusieurs études antérieures, tout en le caractérisant avec plus de précision que jamais auparavant. Les sujets atteints de TSA, quant à eux, extrayaient toutes les FS utiles, basses et hautes, dès le début, indiquant qu'ils ne possédaient pas l'a priori présent chez les neurotypiques. Il semblerait ainsi que les individus atteints de TSA extraient les FS de manière purement ascendante, l'extraction n'étant pas guidée par l'activation d'hypothèses.
Resumo:
In this work, we propose a biologically inspired appearance model for robust visual tracking. Motivated in part by the success of the hierarchical organization of the primary visual cortex (area V1), we establish an architecture consisting of five layers: whitening, rectification, normalization, coding and polling. The first three layers stem from the models developed for object recognition. In this paper, our attention focuses on the coding and pooling layers. In particular, we use a discriminative sparse coding method in the coding layer along with spatial pyramid representation in the pooling layer, which makes it easier to distinguish the target to be tracked from its background in the presence of appearance variations. An extensive experimental study shows that the proposed method has higher tracking accuracy than several state-of-the-art trackers.
Resumo:
À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux neurones à être intégrés dans le système nerveux adulte. Une de ses citations reconnues : “Dans les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928). D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent. Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu 30 ans pour que le concept de neurogenèse adulte soit largement accepté. Cette découverte, en plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt définie comme un environnement en quiescence. Une des principales questions qui a été soulevée suite à ces découvertes est : comment peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive, l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes, oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière, les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement ii donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle fonction post-lésion démontre que la plasticité est encore possible dans un environnement en quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans la moelle épinière. Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches transcriptomiques afin d’ouvrir de nouvelles perspectives. Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des souris sociales (dans l’environnement complexe). iii Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés de cellules souches sur les cellules épendymaires provenant de la moelle épinière.
Resumo:
In questa tesi sono stati analizzati alcuni metodi di ricerca per dati 3D. Viene illustrata una panoramica generale sul campo della Computer Vision, sullo stato dell’arte dei sensori per l’acquisizione e su alcuni dei formati utilizzati per la descrizione di dati 3D. In seguito è stato fatto un approfondimento sulla 3D Object Recognition dove, oltre ad essere descritto l’intero processo di matching tra Local Features, è stata fatta una focalizzazione sulla fase di detection dei punti salienti. In particolare è stato analizzato un Learned Keypoint detector, basato su tecniche di apprendimento di machine learning. Quest ultimo viene illustrato con l’implementazione di due algoritmi di ricerca di vicini: uno esauriente (K-d tree) e uno approssimato (Radial Search). Sono state riportate infine alcune valutazioni sperimentali in termini di efficienza e velocità del detector implementato con diversi metodi di ricerca, mostrando l’effettivo miglioramento di performance senza una considerabile perdita di accuratezza con la ricerca approssimata.
Resumo:
Increasing the size of training data in many computer vision tasks has shown to be very effective. Using large scale image datasets (e.g. ImageNet) with simple learning techniques (e.g. linear classifiers) one can achieve state-of-the-art performance in object recognition compared to sophisticated learning techniques on smaller image sets. Semantic search on visual data has become very popular. There are billions of images on the internet and the number is increasing every day. Dealing with large scale image sets is intense per se. They take a significant amount of memory that makes it impossible to process the images with complex algorithms on single CPU machines. Finding an efficient image representation can be a key to attack this problem. A representation being efficient is not enough for image understanding. It should be comprehensive and rich in carrying semantic information. In this proposal we develop an approach to computing binary codes that provide a rich and efficient image representation. We demonstrate several tasks in which binary features can be very effective. We show how binary features can speed up large scale image classification. We present learning techniques to learn the binary features from supervised image set (With different types of semantic supervision; class labels, textual descriptions). We propose several problems that are very important in finding and using efficient image representation.
Resumo:
Notre système visuel extrait d'ordinaire l'information en basses fréquences spatiales (FS) avant celles en hautes FS. L'information globale extraite tôt peut ainsi activer des hypothèses sur l'identité de l'objet et guider l'extraction d'information plus fine spécifique par la suite. Dans les troubles du spectre autistique (TSA), toutefois, la perception des FS est atypique. De plus, la perception des individus atteints de TSA semble être moins influencée par leurs a priori et connaissances antérieures. Dans l'étude décrite dans le corps de ce mémoire, nous avions pour but de vérifier si l'a priori de traiter l'information des basses aux hautes FS était présent chez les individus atteints de TSA. Nous avons comparé le décours temporel de l'utilisation des FS chez des sujets neurotypiques et atteints de TSA en échantillonnant aléatoirement et exhaustivement l'espace temps x FS. Les sujets neurotypiques extrayaient les basses FS avant les plus hautes: nous avons ainsi pu répliquer le résultat de plusieurs études antérieures, tout en le caractérisant avec plus de précision que jamais auparavant. Les sujets atteints de TSA, quant à eux, extrayaient toutes les FS utiles, basses et hautes, dès le début, indiquant qu'ils ne possédaient pas l'a priori présent chez les neurotypiques. Il semblerait ainsi que les individus atteints de TSA extraient les FS de manière purement ascendante, l'extraction n'étant pas guidée par l'activation d'hypothèses.
Resumo:
The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.