954 resultados para Continuous Monitoring
Resumo:
Diesel particulate matter (DPM), in particular, has been likened in a somewhat inflammatory manner to be the ‘next asbestos’. From the business change perspective, there are three areas holding the industry back from fully engaging with the issue: 1. There is no real feedback loop in any operational sense to assess the impact of investment or application of controls to manage diesel emissions. 2. DPM are getting ever smaller and more numerous, but there is no practical way of measuring them to regulate them in the field. Mass, the current basis of regulation, is becoming less and less relevant. 3. Diesel emissions management is generally wholly viewed as a cost, yet there are significant areas of benefit available from good management. This paper discusses a feedback approach to address these three areas to move the industry forward. The six main areas of benefit from providing a feedback loop by continuously monitoring diesel emissions have been identified: 1. Condition-based maintenance. Emissions change instantaneously if engine condition changes. 2. Operator performance. An operator can use a lot more fuel for little incremental work output through poor technique or discipline. 3. Vehicle utilisation. Operating hours achieved and ratios of idling to under power affect the proportion of emissions produced with no economic value. 4. Fuel efficiency. This allows visibility into other contributing configuration and environmental factors for the vehicle. 5. Emission rates. This allows scope to directly address the required ratio of ventilation to diesel emissions. 6. Total carbon emissions - for NGER-type reporting requirements, calculating the emissions individually from each vehicle rather than just reporting on fuel delivered to a site.
Resumo:
Continuous odour monitoring technologies are necessary to understand the complex odour-generating mechanisms within poultry housing as well as to identify strategies to reduce the impact of odour emissions on local communities. To evaluate electronic nose (EN) technologies for continuously assessing odour concentration in poultry housing, a mobile laboratory containing an electronic nose and an associated sample delivery system was deployed to a commercial poultry farm and tested over a broiler production cycle. The results demonstrated that it was possible to develop a model to allow an electronic nose to provide a semi-continuous measurement of odour concentrations. The electronic nose was also able to demonstrate the influence of shed conditions on odour emissions.
Resumo:
This article examines some preliminary tests which were performed in order to evaluate the best electrode configuration (width and spacing) for cell culture analyses. Biochips packaged with indium tin oxide (ITO) interdigitated electrodes (IDEs) were used to perform impedance measurements on A549 cells cultured on the surface of the biochip. Several tests were carried out using a 10 mM solution of Sodium Chloride (NaCl), cell medium and the cell culture itself to characterize some of the configurations already fabricated in the facilities at Tyndall National Institute.
Resumo:
Phytoplankton abundance in the NW Atlantic was measured by continuous plankton recorder (CPR) sampling along tracks between Iceland and the western Scotian Shelf from 1998 to 2006, when sea-surface chlorophyll (SSChl) measurements were also being made by ocean colour satellite imagery using the SeaWiFS sensor. Seasonal and inter-annual changes in phytoplankton abundance were examined using data collected by both techniques, averaged over each of four shelf regions and four deep ocean regions. CPR sampling had gaps (missing months) in all regions and in the four deep ocean regions satellite observations were too sparse between November and February to be of use. Average seasonal cycles of SSChl were similar to those of total diatom abundance in seven regions, to those of the phytoplankton colour index in six regions, but were not similar to those of total dinoflagellate abundance anywhere. Large inter-annual changes in spring bloom dynamics were captured by both samplers in shelf regions. Changes in annual (or 8 months) averages of SSChl did not generally follow those of the CPR indices within regions and multi-year averages of SSChl, and the three CPR indices were generally higher in shelf than in deep ocean regions. Remote sensing and CPR sampling provide complementary ways of monitoring phytoplankton in the ocean: the former has superior temporal and spatial coverage and temporal resolution, and the latter provides better taxonomic information.
Resumo:
Background: This pilot study aimed to verify if glycemic control can be achieved in type 2 diabetes patients after acute myocardial infarction (AMI), using insulin glargine (iGlar) associated with regular insulin (iReg), compared with the standard intensive care unit protocol, which uses continuous insulin intravenous delivery followed by NPH insulin and iReg (St. Care). Patients and Methods: Patients (n = 20) within 24 h of AMI were randomized to iGlar or St. Care. Therapy was guided exclusively by capillary blood glucose (CBG), but glucometric parameters were also analyzed by blinded continuous glucose monitoring system (CGMS). Results: Mean glycemia was 141 +/- 39 mg/dL for St. Care and 132 +/- 42 mg/dL for iGlar by CBG or 138 +/- 35 mg/dL for St. Care and 129 +/- 34 mg/dL for iGlar by CGMS. Percentage of time in range (80-180 mg/dL) by CGMS was 73 +/- 18% for iGlar and 77 +/- 11% for St. Care. No severe hypoglycemia (<= 40 mg/dL) was detected by CBG, but CGMS indicated 11 (St. Care) and seven (iGlar) excursions in four subjects from each group, mostly in sulfonylurea users (six of eight patients). Conclusions: This pilot study suggests that equivalent glycemic control without increase in severe hyperglycemia may be achieved using iGlar with background iReg. Data outputs were controlled by both CBG and CGMS measurements in a real-life setting to ensure reliability. Based on CGMS measurements, there were significant numbers of glycemic excursions outside of the target range. However, this was not detected by CBG. In addition, the data indicate that previous use of sulfonylurea may be a potential major risk factor for severe hypoglycemia irrespective of the type of insulin treatment.
Resumo:
During this work has been developed an innovative methodology for continuous and in situ gas monitoring (24/24 h) of fumarolic and soil diffusive emissions applied to the geothermal and volcanic area of Pisciarelli near Agnano inside the Campi Flegrei caldera (CFc). In literature there are only scattered and in discrete data of the geochemical gas composition of fumarole at Campi Flegrei; it is only since the early ’80 that exist a systematic record of fumaroles with discrete sampling at Solfatara (Bocca Grande and Bocca Nuova fumaroles) and since 1999, even at the degassing areas of Pisciarelli. This type of sampling has resulted in a time series of geochemical analysis with discontinuous periods of time set (in average 2-3 measurements per month) completely inadequate for the purposes of Civil Defence in such high volcanic risk and densely populated areas. For this purpose, and to remedy this lack of data, during this study was introduced a new methodology of continuous and in situ sampling able to continuously detect data related and from its soil diffusive degassing. Due to its high sampling density (about one measurement per minute therefore producing 1440 data daily) and numerous species detected (CO2, Ar, 36Ar, CH4, He, H2S, N2, O2) allowing a good statistic record and the reconstruction of the gas composition evolution of the investigated area. This methodology is based on continuous sampling of fumaroles gases and soil degassing using an extraction line, which after undergoing a series of condensation processes of the water vapour content - better described hereinafter - is analyzed through using a quadrupole mass spectrometer
Resumo:
Abstract Background and Aims: Data on the influence of calibration on accuracy of continuous glucose monitoring (CGM) are scarce. The aim of the present study was to investigate whether the time point of calibration has an influence on sensor accuracy and whether this effect differs according to glycemic level. Subjects and Methods: Two CGM sensors were inserted simultaneously in the abdomen on either side of 20 individuals with type 1 diabetes. One sensor was calibrated predominantly using preprandial glucose (calibration(PRE)). The other sensor was calibrated predominantly using postprandial glucose (calibration(POST)). At minimum three additional glucose values per day were obtained for analysis of accuracy. Sensor readings were divided into four categories according to the glycemic range of the reference values (low, ≤4 mmol/L; euglycemic, 4.1-7 mmol/L; hyperglycemic I, 7.1-14 mmol/L; and hyperglycemic II, >14 mmol/L). Results: The overall mean±SEM absolute relative difference (MARD) between capillary reference values and sensor readings was 18.3±0.8% for calibration(PRE) and 21.9±1.2% for calibration(POST) (P<0.001). MARD according to glycemic range was 47.4±6.5% (low), 17.4±1.3% (euglycemic), 15.0±0.8% (hyperglycemic I), and 17.7±1.9% (hyperglycemic II) for calibration(PRE) and 67.5±9.5% (low), 24.2±1.8% (euglycemic), 15.5±0.9% (hyperglycemic I), and 15.3±1.9% (hyperglycemic II) for calibration(POST). In the low and euglycemic ranges MARD was significantly lower in calibration(PRE) compared with calibration(POST) (P=0.007 and P<0.001, respectively). Conclusions: Sensor calibration predominantly based on preprandial glucose resulted in a significantly higher overall sensor accuracy compared with a predominantly postprandial calibration. The difference was most pronounced in the hypo- and euglycemic reference range, whereas both calibration patterns were comparable in the hyperglycemic range.
Resumo:
Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST.
Resumo:
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the selection of coaster brook trout (a life history variant of Salvelinus fontinalis,) spawning sites. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. Throughout this site, the river is relatively similar along its length with regard to stream channel and substrate features. A monitoring well system consisting of an array of 27 wells was installed to measure subsurface temperatures underneath the riverbed over a 13-month period. The monitoring well locations were separated into areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from 5 depths within each of the 27 monitoring wells. Temperatures within the substrate at the spawning area were generally cooler and less variable than river temperatures. Substrate temperatures in the non-spawning area were generally warmer, more variable, and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated velocities in the spawning and non-spawning areas confirmed that groundwater velocities in the spawning area were primarily in the upward direction, and were generally greater in magnitude than velocities in the non-spawning area. In the non-spawning area there was a greater occurrence of velocities in the downward direction, and velocity estimates were generally lesser in magnitude than in the spawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater influx to the river bed.