953 resultados para Continental margins
Resumo:
Uranium content of in phosphorites from Pacific seamounts does not exceed 10ppm; it is significantly lower than in phosphorites from submarine continental margins and deposits on land. Phosphate is not the main carrier of uranium, which is inhomogeneously distributed in ferromanganese hydroxide-, phosphate-, silicate- and carbonate materials. Uranium associated with phosphate is not isomorphic admixture. Uranium occurs in rocks in fine particles of unknown composition. Ultramicroscopic inclusions of U(IV) oxides have been also found.
Resumo:
Several vertebrae of a sauropterygian specimen have been recovered in Fuencaliente de Medinaceli (Soria Province, Castilla y León, Spain). The remains come from Middle–Upper Triassic Muschelkalk Facies. This finding represents the first documented evidence of a Triassic tetrapod in Castilla y León. The vertebrae belong to Nothosaurus, a sauropterygian genus found in Europe, Middle East, North of Africa and China. This genus is poorly-known in the Iberian record. The new remains constitute the first evidence of the species Nothosaurus giganteus, or a related taxon, in the Iberian Peninsula. This study reveals the occurrence of at least two species of the sauropterygian Nothosaurus in the Spanish record.
Resumo:
The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling.
Resumo:
The crustal and lithospheric mantle structure at the south segment of the west Iberian margin was investigated along a 370 km long seismic transect. The transect goes from unthinned continental crust onshore to oceanic crust, crossing the ocean-continent transition (OCT) zone. The wide-angle data set includes recordings from 6 OBSs and 2 inland seismic stations. Kinematic and dynamic modeling provided a 2D velocity model that proved to be consistent with the modeled free-air anomaly data. The interpretation of coincident multi-channel near-vertical and wide-angle reflection data sets allowed the identification of four main crustal domains: (i) continental (east of 9.4 degrees W); (ii) continental thinning (9.4 degrees W-9.7 degrees W): (iii) transitional (9.7 degrees W-similar to 10.5 degrees W); and (iv) oceanic (west of similar to 10.5 degrees W). In the continental domain the complete crustal section of slightly thinned continental crust is present. The upper (UCC, 5.1-6.0 km/s) and the lower continental crust (LCC, 6.9-7.2 km/s) are seismically reflective and have intermediate to low P-wave velocity gradients. The middle continental crust (MCC, 6.35-6.45 km/s) is generally unreflective with low velocity gradient. The main thinning of the continental crust occurs in the thinning domain by attenuation of the UCC and the LCC. Major thinning of the MCC starts to the west of the LCC pinchout point, where it rests directly upon the mantle. In the thinning domain the Moho slope is at least 13 degrees and the continental crust thickness decreases seaward from 22 to 11 km over a similar to 35 km distance, stretched by a factor of 1.5 to 3. In the oceanic domain a two-layer high-gradient igneous crust (5.3-6.0 km/s; 6.5-7.4 km/s) was modeled. The intra-crustal interface correlates with prominent mid-basement, 10-15 km long reflections in the multi-channel seismic profile. Strong secondary reflected PmP phases require a first order discontinuity at the Moho. The sedimentary cover can be as thick as 5 km and the igneous crustal thickness varies from 4 to 11 km in the west, where the profile reaches the Madeira-Tore Rise. In the transitional domain the crust has a complex structure that varies both horizontally and vertically. Beneath the continental slope it includes exhumed continental crust (6.15-6.45 km/s). Strong diffractions were modeled to originate at the lower interface of this layer. The western segment of this transitional domain is highly reflective at all levels, probably due to dykes and sills, according to the high apparent susceptibility and density modeled at this location. Sub-Moho mantle velocity is found to be 8.0 km/s, but velocities smaller than 8.0 km/s confined to short segments are not excluded by the data. Strong P-wave wide-angle reflections are modeled to originate at depth of 20 km within the lithospheric mantle, under the eastern segment of the oceanic domain, or even deeper at the transitional domain, suggesting a layered structure for the lithospheric mantle. Both interface depths and velocities of the continental section are in good agreement to the conjugate Newfoundland margin. A similar to 40 km wide OCT having a geophysical signature distinct from the OCT to the north favors a two pulse continental breakup.
Resumo:
The discovery of exhumed continental mantle and hyper-extended crust in present-day magma-poor rifted margins is at the origin of a paradigm shift within the research field of deep-water rifted margins. It opened new questions about the strain history of rifted margins and the nature and composition of sedimentary, crustal and mantle rocks in rifted margins. Thanks to the benefit of more than one century of work in the Alps and access to world-class outcrops preserving the primary relationships between sediments and crustal and mantle rocks from the fossil Alpine Tethys margins, it is possible to link the subsidence history and syn-rift sedimentary evolution with the strain distribution observed in the crust and mantle rocks exposed in the distal rifted margins. In this paper, we will focus on the transition from early to late rifting that is associated with considerable crustal thinning and a reorganization of the rift system. Crustal thinning is at the origin of a major change in the style of deformation from high-angle to low-angle normal faulting which controls basin-architecture, sedimentary sources and processes and the nature of basement rocks exhumed along the detachment faults in the distal margin. Stratigraphic and isotopic ages indicate that this major change occurred in late Sinemurian time, involving a shift of the syn-rift sedimentation toward the distal domain associated with a major reorganization of the crustal structure with exhumation of lower and middle crust. These changes may be triggered by mantle processes, as indicated by the infiltration of MOR-type magmas in the lithospheric mantle, and the uplift of the Brianconnais domain. Thinning and exhumation of the crust and lithosphere also resulted in the creation of new paleogeographic domains, the Proto Valais and Liguria-Piemonte domains. These basins show a complex, 3D temporal and spatial evolution that might have evolved, at least in the case of the Liguria-Piemonte basin, in the formation of an embryonic oceanic crust. The re-interpretation of the rift evolution and the architecture of the distal rifted margins in the Alps have important implications for the understanding of rifted margins worldwide, but also for the paleogeographic reconstruction of the Alpine domain and its subsequent Alpine compressional overprint.
Resumo:
A very important alluvial fan clastic sedimentation, took place in the NNESSW trending Valles-Penedes graben (northeastem Spain) during Miocene time. Shallow lacustrine and paludine areas developed in distal zones of these alluvial fan complexes during Burdigalian (Early Miocene). At that time both facies development and their distribution were closely controlled by tectonic activity. Fault scarp retreat and back-faulting processes in the southeastem edge of the basin (observed in westem Valles afea), originated an expansive advance of distal alluvial-fan facies in that direction. The decreasing or cessation of the activity of the southeastern margin fault ca~sedi,n Late Burdigalian time (while faults in the northwestern margin were still active) facies redistribution, and gave way to the assymetry of the basin. Finally lacustrine, marine and transitional deposits of late burdigalian and langhian age, were laid down overlapping the southeastem inactive margins.
Resumo:
This work presents the results of the first imaging of continental slope adjacent to Potiguar Basin, in the equatorial Brazilian margin (NE Brazil). Swath bathymetry provided a complete coverage of seafloor between the upper and middle slope (100-1,300 m). Fifteen submarine canyons were mapped. The shape of the slope reflects in distinct spatial distribution of the canyons. The western area displays convex profiles which implied a greater amount of incisions by canyons. Some of them have gradient walls higher than 35°. They were classified according to location and morphology. The canyons with heads indenting shelf edge, association with a incised valley and a large fluvial system, high sinuosities, V shape, terraces along margins, further erosive features such as landslide and gullies allow to deduce a sandy-gravelly sedimentation. These canyons are associated with deposition of submarine fan systems that have been considered permeable hydrocarbon reservoirs. The presence of gullies, furrows and dunes demonstrates the role of bottom currents in the shaping of the slope. The enlargement of canyons and the change in the course when they cross the border fault imply that tectonic has also influenced in the morphology of deep waters environments of Potiguar Basin. The current sedimentation of continental slope is considered mixed because the sediments are composed of siliciclastics and bioclasts. Predominant siliciclastics are calcite, dolomite, quartz, and clay minerals. The presence of stable minerals (zircon, tourmaline and rutile), and fragmented bioclasts implies the contributions of Rivers Açu and Apodi
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Numerous studies use major element concentrations measured on continental margin sediments to reconstruct terrestrial climate variations. The choice and interpretation of climate proxies however differ from site to site. Here we map the concentrations of major elements (Ca, Fe, Al, Si, Ti, K) in Atlantic surface sediments (36 degrees N-49 degrees S) to assess the factors influencing the geochemistry of Atlantic hemipelagic sediments and the potential of elemental ratios to reconstruct different terrestrial climate regimes. High concentrations of terrigenous elements and low Ca concentrations along the African and South American margins reflect the dominance of terrigenous input in these regions. Single element concentrations and elemental ratios including Ca (e. g., Fe/Ca) are too sensitive to dilution effects (enhanced biological productivity, carbonate dissolution) to allow reliable reconstructions of terrestrial climate. Other elemental ratios reflect the composition of terrigenous material and mirror the climatic conditions within the continental catchment areas. The Atlantic distribution of Ti/Al supports its use as a proxy for eolian versus fluvial input in regions of dust deposition that are not affected by the input of mafic rock material. The spatial distributions of Al/Si and Fe/K reflect the relative input of intensively weathered material from humid regions versus slightly weathered particles from drier areas. High biogenic opal input however influences the Al/Si ratio. Fe/K is sensitive to the input of mafic material and the topography of Andean river drainage basins. Both ratios are suitable to reconstruct African and South American climatic zones characterized by different intensities of chemical weathering in well-understood environmental settings.
Resumo:
Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 * 10**8 cells/g equivalent to 8.7 and 38.7 µgC/g) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.
Resumo:
Samples collected at two different depths (ca. 3200 and ca. 4200 m) in the Setúbal and Cascais canyons off the Portuguese coast, during the HERMES RRS Charles Darwin cruise CD179, were analysed for (1) sediment biogeochemistry (TOC, TN) and (2) composition, and structural and trophic diversity of nematode communities. Multivariate PERMANOVA analysis on the nematode community data revealed differences between sediment layers that were greater than differences between canyons, water depths, and stations. This suggests that biogeochemical gradients along the vertical sediment profile are crucial in determining nematode community structure. The interaction between canyon conditions and the nematode community is illustrated by biogeochemical patterns in the sediment and the prevalence of nematode genera that are able to persist in disturbed sediments. Trophic analysis of the nematode community indicated that non-selective deposit feeders are dominant, presumably because of their non-selective feeding behaviour compared to other feeding types, which gives them a competitive advantage in exploiting lower-quality food resources. This study presents a preliminary conceptual scheme for interactions between canyon conditions and the resident fauna.
Resumo:
Samples collected in the deep Nazaré Canyon and at the adjacent slope, during the HERMES RRS Discovery D297 cruise (2005), were analysed for metazoan meiofauna, nematode structure and diversity and its relation to quality and quantity of sedimentary organic material. The amount and quality of organic matter available for direct consumption was much higher in the canyon compared to the slope and positively correlated with high nematode abundances (795-1171 ind. 10 cm**-2) and biomass (93.2-343.5 µg dry weight 10 cm**-2), thus leading to higher standing stocks. Canyon nematode assemblages also showed particular adaptations (e.g. higher trophic complexity, variability of nematode morphology, and presence of opportunistic genera) to canyon conditions, particularly in the deeper sediment layers. The Nazaré Canyon's nematode diversity was slightly lower than that of the adjacent slope and its assemblages were characterised by a higher dominance of certain genera. Still, the canyon contributes considerably to total Western Iberian Margin diversity due to different assemblages present compared to the slope. Furthermore, the harsh conditions in terms of hydrodynamic disturbance and the high organic matter flux are likely to have a negative impact on the establishment of species rich meiobenthic communities, especially in the canyon axis.
Resumo:
The Indo-Pakistan Continental Margin represents an extreme habitat for benthic foraminifera since (1) high fluxes of organic matter offer a high food supply, (2) an intensified oxygen minimum Zone (OMZ) develops from the base of the euphotic Zone to water depths over 1000 m and (3) the monsoon causes seasonal oscillations within the biogeochemical cycle. At three stations from the uppermost (233 m), the central (658 m) and the deeper part (902 m) of the OMZ, living benthic foraminiferal assemblages were analyzed within the uppermost 10 cm of the sediment column. The ecologic structure of foraminiferal faunas is characterized by high abundances at the sediment surface and a rapid decrease within the uppermost 2 cm of the sediment column. Despite dysoxic to suboxic bottom-water conditions, stained benthic foraminifera occurred in all cores down to the base of the sampled interval. High surface abundances, a high dominance by few endobenthic calcareous taxa and a low diversity, which may result from specific physiological adaptations to almost anoxic conditions and the absence of predators, are recognized in the central part of the OMZ. The upper and lower margins of the OMZ are characterized by higher diversities and lower abundances. The shallowest part of the OMZ is dominated by calcareous foraminifera, whereas agglutinated species are the most common taxa in the deeper part. Comparisons with previous studies show that benthic foraminiferal assemblages, that are influenced by seasonal oscillations controlling food supply and/or the availability of oxygen, show variations in faunal density and species composition. Since there is strong evidence that oxygen is not a limiting factor for some taxa, it seems more likely that the distribution pattern of benthic foraminifera is preferentially controlled by trophic conditions.