841 resultados para Conceptual continuity
Resumo:
Even though satellite observations are the most effective means to gather global information in a short span of time, the challenges in this field still remain over continental landmass, despite most of the aerosol sources being land-based. This is a hurdle in global and regional aerosol climate forcing assessment. Retrieval of aerosol properties over land is complicated due to irregular terrain characteristics and the high and largely uncertain surface reflection which acts as `noise' to the much smaller amount of radiation scattered by aerosols, which is the `signal'. In this paper, we describe a satellite sensor the - `Aerosol Satellite (AEROSAT)', which is capable of retrieving aerosols over land with much more accuracy and reduced dependence on models. The sensor, utilizing a set of multi-spectral and multi-angle measurements of polarized components of radiation reflected from the Earth's surface, along with measurements of thermal infrared broadband radiance, results in a large reduction of the `noise' component (compared to the `signal). A conceptual engineering model of AEROSAT has been designed, developed and used to measure the land-surface features in the visible spectral band. Analysing the received signals using a polarization radiative transfer approach, we demonstrate the superiority of this method. It is expected that satellites carrying sensors following the AEROSAT concept would be `self-sufficient', to obtain all the relevant information required for aerosol retrieval from its own measurements.
Resumo:
Using the numerical device simulation we show that the relationship between the surface potentials along the channel in any double gate (DG) MOSFET remains invariant in QS (quasistatic) and NQS (nonquasi-static) condition for the same terminal voltages. This concept along with the recently proposed `piecewise charge linearization' technique is then used to develop the intrinsic NQS charge model for a Independent DG (IDG) MOSFET by solving the governing continuity equation. It is also demonstrated that unlike the usual MOSFET transcapacitances, the inter-gate transcapacitance of a IDG-MOSFET initially increases with the frequency and then saturates, which might find novel analog circuit application. The proposed NQS model shows good agreement with numerical device simulations and appears to be useful for efficient circuit simulation.
Resumo:
Search of design spaces to generate solutions affects the design outcomes during conceptual design. This research aims to understand the different types of search that occurs during conceptual design and their effect on the design outcomes. Additionally, we study the effect of other factors, such as creativity, problem-solving style, and experience of designers, on the design outcomes. Two sets of design experiments, with experienced and novice designers, are used in this study. We find that designers employ twelve different types of searches during conceptual design for problem understanding, solution generation, and solution evaluation activities. Results also suggest that creativity is influenced positively by the type and amount of searches, duration of designing, and experience of designers.
Resumo:
The goal of the work reported in this paper is to use automated, combinatorial synthesis to generate alternative solutions to be used as stimuli by designers for ideation. FuncSION, a computational synthesis tool that can automatically synthesize solution concepts for mechanical devices by combining building blocks from a library, is used for this purpose. The objectives of FuncSION are to help generate a variety of functional requirements for a given problem and a variety of concepts to fulfill these functions. A distinctive feature of FuncSION is its focus on automated generation of spatial configurations, an aspect rarely addressed by other computational synthesis programs. This paper provides an overview of FuncSION in terms of representation of design problems, representation of building blocks, and rules with which building blocks are combined to generate concepts at three levels of abstraction: topological, spatial, and physical. The paper then provides a detailed account of evaluating FuncSION for its effectiveness in providing stimuli for enhanced ideation.
Resumo:
Electromagnetic Articulography (EMA) technique is used to record the kinematics of different articulators while one speaks. EMA data often contains missing segments due to sensor failure. In this work, we propose a maximum a-posteriori (MAP) estimation with continuity constraint to recover the missing samples in the articulatory trajectories recorded using EMA. In this approach, we combine the benefits of statistical MAP estimation as well as the temporal continuity of the articulatory trajectories. Experiments on articulatory corpus using different missing segment durations show that the proposed continuity constraint results in a 30% reduction in average root mean squared error in estimation over statistical estimation of missing segments without any continuity constraint.
Resumo:
Internal analogies are created if the knowledge of source domain is obtained only from the cognition of designers. In this paper, an understanding of the use of internal analogies in conceptual design is developed by studying: the types of internal analogies; the roles of internal analogies; the influence of design problems on the creation of internal analogies; the role of experience of designers on the use of internal analogies; the levels of abstraction at which internal analogies are searched in target domain, identified in source domain, and realized in the target domain; and the effect of internal analogies from the natural and artificial domains on the solution space created using these analogies. To facilitate this understanding, empirical studies of design sessions from earlier research, each involving a designer solving a design problem by identifying requirements and developing conceptual solutions, without using any support, are used. The following are the important findings: designers use analogies from the natural and artificial domains; analogies are used for generating requirements and solutions; the nature of the design problem influences the use of analogies; the role of experience of designers on the use of analogies is not clearly ascertained; analogical transfer is observed only at few levels of abstraction while many levels remain unexplored; and analogies from the natural domain seem to have more positive influence than the artificial domain on the number of ideas and variety of idea space.
Resumo:
The demand for variety of products and the shorter time to market is encouraging designers to adopt computer aided concept generation techniques. One such technique is being explored here. The present work makes an attempt towards synthesis of concepts for sensors using physical laws and effects as building blocks. A database of building blocks based upon the SAPPhIRE-lite model of causality is maintained. It uses composition to explore the solution space. The algorithm has been implemented in a web based tool. The tool generates two types of sensor designs: direct sensing designs and feedback sensing designs. According to the literature, synthesis using building blocks often lead to vague solutions principles. The current work tries to avoid uninteresting solutions by using some heuristics. A particularly novel outcome of the work described here is the generation of feedback based solutions, something not generated automatically before. A number of patent violations were observed with the set of generated concepts; thus emphasizing some amount of novelty in the designs.
Resumo:
Conceptual Design Phase is the most critical for design decisions and their impact on the Environment. It is also a phase of many `unknowns' making it flexible and allowing exploration of many solutions. Thus, it is a challenge to determine the most Environmentally-benign Solution or Concept to be translated in to a `good' product. The SAPPhIRE Model captures the various levels of abstractions present in Conceptual Design by Outcomes and defines a Solution-variant as a set of verifiable and quantifiable Outcomes. The Causality explains the propagation of Environmental Impact across Outcomes at varying levels of abstraction, suggesting that the Environmental Impact of an Outcome at a certain level can be represented as a collation of Environmental Impact information of all the Outcomes at each of its subsequent lower levels of abstraction. Thus a ball-park impact value can be associated with the higher-levels of abstraction, thereby supporting design decisions taken earlier on in Conceptual Design directing towards Environmentally-benign Design.
Resumo:
Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.
Resumo:
The particulate matter concentration above the seabed is usually assumed to decrease with height, following an exponential or Rouse profile. Many particulate matter concentration profiles with a peak were found on the North Mediterranean bottom water at a few tens of metres above the bottom. A particle size signal at the same altitude was found in this area and on the New York Eight shelf. It is assumed that this unexpected shape is due to a cloud of resuspended cohesive sediments originating from an impulse resuspension process. A simplified three-dimensional numerical model is proposed to describe the behaviour of resuspended particulate matter that originates from a sediment impulse vertically injected in the bottom water. This model reproduces the concentration profile shape observed, and it gives indications concerning the length and time characteristics of such a cloud, depending on the water velocity and bottom boundary layer properties.