992 resultados para Comprehensive Everglades Restoration Plan (CERP)
Resumo:
Such restructuring shall encompass the provision of housing, health, financial and supportive older adult services. It is envisioned that this restructuring will promote the development, availability, and accessibility of a comprehensive, affordable, and sustainable service delivery system that places a high priority on home-based and community-based services. Such restructuring will encompass all aspects of the delivery system regardless of the setting in which the service is provided." (PA 093-1081 Section 5).
Resumo:
Introduction: The major findings and suggested framework for action put forth by the U.S. Surgeon General form the basis for Illinois' plan. Augmenting this foundation is the collective wisdom of citizens, stakeholders and policy makers. The result is a comprehensive vision that can be embraced by all involved in the process. The plan articulates goals, priorities and strategies to improve the oral health of all Illinoisans. Its five policy goals reflect specific priorities and its recommended strategies and action steps suggest how to address each of them. The plan concludes with a call for the establishment of a select committee to monitor and provide guidance in the implementation of the plan.
Resumo:
This project is for the ecological rehabilitation of lagoons and natural communities at 24 parks within the Chicago Park District. The development of Chicago's lagoon system began shortly after the State of Illinois created the Chicago Park District in 1869. The lagoons were expanded over the next 50 years into 14 parks and they have become extremely important ecologic, recreation, and historic resources. A variety of factors over the last 140 years have contributed to the current deteriorated condition of the lagoons which require the expenditure of funds for major rehabilitation activities. Age of infrastructure, erosion, and sedimentation were the natural forces at work; however, the lagoons' popularity and lack of comprehensive management plan also contributed. All of the lagoons are eligible to be listed on the National Register of Historic places as major contributing features. Additionally, the lagoons in Columbus, Garfield, Humboldt, Jackson, Lincoln, Sherman and Washington Parks are historic landmarks. The Park District has already invested over $5 million for partial lagoon restoration at Humboldt, Douglas, Sherman, McKinley, Riis and Garfield Parks, and additional work is required.
Resumo:
"As submitted to the U.S. Department of Housing and Urban Development."
Resumo:
"June 1969."--Covers.
Resumo:
Distributed to some depository libraries in microfiche.
Resumo:
A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomogeneity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm x 310 mm x 310 mm), and it contained 10,830 control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less, which were less than one tenth of the voxel's dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and research settings. especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Purpose – The purpose of this paper is to develop a comprehensive framework for improving intensive care unit performance. Design/methodology/approach – The study introduces a quality management framework by combining cause and effect diagram and logical framework. An intensive care unit was identified for the study on the basis of its performance. The reasons for not achieving the desired performance were identified using a cause and effect diagram with the stakeholder involvement. A logical framework was developed using information from the cause and effect diagram and a detailed project plan was developed. The improvement projects were implemented and evaluated. Findings – Stakeholders identified various intensive care unit issues. Managerial performance, organizational processes and insufficient staff were considered major issues. A logical framework was developed to plan an improvement project to resolve issues raised by clinicians and patients. Improved infrastructure, state-of-the-art equipment, well maintained facilities, IT-based communication, motivated doctors, nurses and support staff, improved patient care and improved drug availability were considered the main project outputs for improving performance. The proposed framework is currently being used as a continuous quality improvement tool, providing a planning, implementing, monitoring and evaluating framework for the quality improvement measures on a sustainable basis. Practical implications – The combined cause and effect diagram and logical framework analysis is a novel and effective approach to improving intensive care performance. Similar approaches could be adopted in any intensive care unit. Originality/value – The paper focuses on a uniform model that can be applied to most intensive care units.
Resumo:
The euro area‘s sovereign debt crisis continues though significant steps have been taken to resolve it. This paper proposes a comprehensive solution to the crisis based on three pillars: a plan to restore banking sector soundness in the whole euro area, a resolution of sovereign debt crisis -including a revision of EU assistance facilities and a reduction of the Greek public debt- and a strategy to foster growth and competitiveness. The paper provides novel estimates and analysis focusing on the current situation of Greece, Ireland, Portugal and Spain.
Resumo:
Acoustic velocity meter (AVM) sites, located both distant and adjacent to canal water control structures, were constructed and calibrated in L-31W borrow canal and Canal 111 (C-111) to measure canal water velocity. Data were used to compute monthly discharge volumes and overall water budgets for several canal reaches from August 1994 to May 1996. The water budgets indicated extensive aquifer inflows in L-31W associated, in part, with S-332 pump station return flows. Canal and groundwater piezometer data showed 5 distinct hydrologic scenarios (distinguished by the direction and magnitude of hydraulic gradients) in the important Frog Pond area on the eastern boundary of the Everglades National Park. Most of the water lost from C-111 was via surface water losses near the outlet of the system, close to Florida Bay. The distribution of flows during the study suggest an alteration of the present South Dade Conveyance System modification plan to improve water deliveries to Taylor Slough and the Eastern Panhandle of the Everglades National Park. ^
Resumo:
Water management has altered both the natural timing and volume of freshwater delivered to Everglades National Park. This is especially true for Taylor Slough and the C-111 basin, as hypersaline events in Florida Bay have been linked to reduced freshwater flow in this area. In light of recent efforts to restore historical flows to the eastern Everglades, an understanding of the impact of this hydrologic shift is needed in order to predict the trajectory of restoration. I conducted a study to assess the importance of season, water chemistry, and hydrologic conditions on the exchange of nutrients in dwarf and fringe mangrove wetlands along Taylor Slough. I also performed mangrove leaf decomposition studies to determine the contribution of biotic and abiotic processes to mass loss, the effect of salinity and season on degradation rates, and the importance of this litter component as a rapid source of nutrients. ^ Dwarf mangrove wetlands consistently imported total nutrients (C, N, and P) and released NO2− +NO3 −, with enhanced release during the dry season. Ammonium flux shifted from uptake to release over the study period. Dissolved phosphate activity was difficult to discern in either wetland, as concentrations were often below detection limits. Fluxes of dissolved inorganic nitrogen in the fringe wetland were positively related to DIN concentrations. The opposite was found for total nitrogen in the fringe wetland. A dynamic budget revealed a net annual export of TN to Florida Bay that was highest during the wet season. Simulated increases and decreases in freshwater flow yielded reduced exports of TN to Florida Bay as a result of changes in subsystem and water flux characteristics. Finally, abiotic processes yielded substantial nutrient and mass losses from senesced leaves with little influence of salinity. Dwarf mangrove leaf litter appeared to be a considerable source of nutrients to the water column of this highly oligotrophic wetland. To summarize, nutrient dynamics at the subsystem level were sensitive to short-term changes in hydrologic and seasonal conditions. These findings suggest that increased freshwater flow has the potential to lead to long-term, system-level changes that may reach as far as eastern Florida Bay. ^
Resumo:
Hydroperiod, or the distribution, duration and timing of flooding affects both plant and animal distributions. The Florida Everglades is currently undergoing restoration that will result in altered hydroperiods. This study was conducted in Everglades National Park to document the variability in periphyton community structure and function between long and short hydroperiod Everglades marshes. Periphyton is an important primary producer and important food resource in the Everglades. Periphyton is also involved in marl soil formation and nutrient cycling. Although periphyton is an important component of the Everglades landscape, little is known about periphyton structural-functional variation between hydroperiods. ^ For this study diatoms, as well as fresh algae slides of diatoms, cyanobacteria and green algae were identified and enumerated. Short verse long hydroperiod soil and water column nutrients were compared. Short and long hydroperiod algal periphyton mat productivity rates were compared using BOD incubations. Experimental manipulations were performed to determine the effects of desiccation duration and rewetting on periphyton productivity, community structure, and nutrient flux. ^ Variation in periphyton community structure was significantly greater between hydroperiods than within hydroperiods. Short and long hydroperiod periphyton mats have the same algal species, it is the distribution and abundance that varies between hydroperiods. Long hydroperiod mats have greater diatom abundance while short hydroperiod mats have greater relative filamentous cyanobacterial abundance. ^ Long hydroperiod mats had greater net primary production (npp) than short hydroperiod mats. Short hydroperiod mats respond to rewetting more rapidly than do long hydroperiod mats. Dry short hydroperiod mats became net primary producers within 24 hours of rehydration. Increasing desiccation duration led to greater cyanobacterial abundance in long hydroperiod mats and decreased diatom abundance in both long and short hydroperiod mats. ^
Resumo:
Everglades National Park (ENP) is about to undergo the world's largest wetland restoration with the aim of improving the quality, timing and distribution of water flow. The changes in water flow are hypothesized to alter the nutrient fluxes and organic matter (OM) dynamics within ENP, especially in the estuarine areas. This study used a multi-proxy approach of molecular markers and stable δ 13C isotope measurements, to determine the present day OM dynamics in ENP. ^ OM dynamics in wetland soils/sediments have proved to be difficult to understand using traditional geochemical approaches. These are often inadequate to describe the multitude of OM sources (e.g. higher land plant, emergent vegetation, submerged vegetation) to the soils/sediments and the complex diagenetic processes that can alter the OM characteristics. A multi-proxy approach, however, that incorporates both molecular level and bulk parameter information is ideal to comprehend complex OM dynamics in aquatic environments. Therefore, biomass-specific molecular markers or proxies can be useful in tracing the sources and processing of OM. This approach was used to examine the OM dynamics in the two major drainage basins, Shark River Slough and Taylor River Slough, of ENP. Freshwater to marine transects were sampled in both systems for soils/sediments and suspended particulate organic matter (SPOM) to be characterized through bulk OM analyses, lipid biomarker determinations (e.g. sterols, fatty acids, hydrocarbons and triterpenoids) and compound-specific stable carbon isotope (δ 13C) determinations. ^ One key accomplishment of the research was the assessment of a molecular marker proxy (Paq) to distinguish between emergent/higher plant vegetation from submerged vegetation within ENP. This proxy proved to be quite useful at tracing OM inputs to the soils/sediments of ENP. A second key accomplishment was the development of a 3-way model using vegetation specific molecular markers. This novel, descriptive model was successfully applied to the estuarine areas of Taylor and Shark River sloughs, providing clear evidence of mixing of freshwater, estuarine and marine derived OM in these areas. In addition, diagenetic transformations of OM in these estuaries were found to be quite different between Taylor and Shark Rivers, and are likely a result of OM quality and hydrological differences. ^
Resumo:
This dissertation research project addressed the question of how hydrologic restoration of the Everglades is impacting the nutrient dynamics of marsh ecosystems in the southern Everglades. These effects were analyzed by quantifying nitrogen (N) cycle dynamics in the region. I utilized stable isotope tracer techniques to investigate nitrogen uptake and cycling between the major ecosystem components of the freshwater marsh system. I recorded the natural isotopic signatures (δ15N and δ 13C) for major ecosystem components from the three major watersheds of the Everglades: Shark River Slough, Taylor Slough, and C-111 basin. Analysis of δ15 N and δ13C natural abundance data were used to demonstrate the spatial extent to which nitrogen from anthropogenic or naturally enriched sources is entering the marshes of the Everglades. In addition, I measured the fluxes on N between various ecosystem components at both near-canal and estuarine ecotone locations. Lastly, I investigated the effect of three phosphorus load treatments (0.00 mg P m-2, 6.66 mg P m-2, and 66.6 mg P m-2) on the rate and magnitude of ecosystem N-uptake and N-cycling. The δ15N and δ13C natural abundance data supported the hypothesis that ecosystem components from near-canal sites have heavier, more enriched δ 15N isotopic signatures than downstream sites. The natural abundance data also showed that the marshes of the southern Everglades are acting as a sink for isotopically heavier, canal-borne dissolved inorganic nitrogen (DIN) and a source for "new" marsh derived dissolved organic nitrogen (DON). In addition, the 15N mesocosm data showed the rapid assimilation of the 15N tracer by the periphyton component and the delayed N uptake by soil and macrophyte components in the southern Everglades.
Resumo:
A comprehensive investigation of sensitive ecosystems in South Florida with the main goal of determining the identity, spatial distribution, and sources of both organic biocides and trace elements in different environmental compartments is reported. This study presents the development and validation of a fractionation and isolation method of twelve polar acidic herbicides commonly applied in the vicinity of the study areas, including e.g. 2,4-D, MCPA, dichlorprop, mecroprop, picloram in surface water. Solid phase extraction (SPE) was used to isolate the analytes from abiotic matrices containing large amounts of dissolved organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-) in a Quadrupole Ion Trap mass spectrometer was used to perform the characterization of the herbicides of interest. ^ The application of Laser Ablation-ICP-MS methodology in the analysis of soils and sediments is reported in this study. The analytical performance of the method was evaluated on certified standards and real soil and sediment samples. Residential soils were analyzed to evaluate feasibility of using the powerful technique as a routine and rapid method to monitor potential contaminated sites. Forty eight sediments were also collected from semi pristine areas in South Florida to conduct screening of baseline levels of bioavailable elements in support of risk evaluation. The LA-ICP-MS data were used to perform a statistical evaluation of the elemental composition as a tool for environmental forensics. ^ A LA-ICP-MS protocol was also developed and optimized for the elemental analysis of a wide range of elements in polymeric filters containing atmospheric dust. A quantitative strategy based on internal and external standards allowed for a rapid determination of airborne trace elements in filters containing both contemporary African dust and local dust emissions. These distributions were used to qualitative and quantitative assess differences of composition and to establish provenance and fluxes to protected regional ecosystems such as coral reefs and national parks. ^