921 resultados para Complex problems
Resumo:
The cropping region of northern Australia has a diverse range of cropping systems and weed flora. A fallow phase is commonly required between crops to enable the accumulation of stored soil water in these farming systems dominated by reduced tillage. During the fallow phase, weed control is important and is heavily reliant on herbicides. The most commonly used herbicide has been glyphosate. As a result of over-reliance on glyphosate, there are now seven confirmed glyphosate-resistant weeds and several glyphosate-tolerant species common in the region. As a result, the control of summer fallow weeds is become more complex. This paper outlines project work investigating improved weed control for summer fallows in the northern cropping region. Areas of research include weed ecology, chemical and non-chemical tactics, glyphosate resistance and resistance surveys. The project also has an economic and extension component. As a result of our research we have a better understanding of the ecology of major northern weeds and spread of glyphosate resistance in the region. We have identified and defined alternative herbicide and non-chemical approaches for the effective control of summer fallow weeds and have extended our research effectively to industry.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
We present a signal processing approach using discrete wavelet transform (DWT) for the generation of complex synthetic aperture radar (SAR) images at an arbitrary number of dyadic scales of resolution. The method is computationally efficient and is free from significant system-imposed limitations present in traditional subaperture-based multiresolution image formation. Problems due to aliasing associated with biorthogonal decomposition of the complex signals are addressed. The lifting scheme of DWT is adapted to handle complex signal approximations and employed to further enhance the computational efficiency. Multiresolution SAR images formed by the proposed method are presented.
Resumo:
Several researchers are of the opinion that there are many benefits in using the object-oriented paradigm in information systems development. If the object-oriented paradigm is used, the development of information systems may, for example, be faster and more efficient. On the other hand, there are also several problems with the paradigm. For example, it is often considered complex, it is often difficult to make use of the reuse concept and it is still immature in some areas. Although there are several interesting features in the object-oriented paradigm, there is still little comprehensive knowledge of the benefits and problems associated with it. The objective of the following study was to investigate and to gain more understanding of the benefits and problems of the object-oriented paradigm. A review of previous studies was made and twelve benefits and twelve problems were established. These benefits and problems were then analysed, studied and discussed. Further a survey and some case studies were made in order to get some knowledge on what benefits and problems with the object-oriented paradigm Finnish software companies had experienced. One hundred and four companies answered the survey that was sent to all Finnish software companies with five or more employees. The case studies were made with six large Finnish software companies. The major finding was that Finnish software companies were exceptionally positive towards the object-oriented information systems development and had experienced very few of the proposed problems. Finally two models for further research were developed. The first model presents connections between benefits and the second between problems.
Resumo:
Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.
Resumo:
Multiscale coupling attracts broad interests from mechanics, physics and chemistry to biology. The diversity and coupling of physics at different scales are two essential features of multiscale problems in far-from-equilibrium systems. The two features present fundamental difficulties and are great challenges to multiscale modeling and simulation. The theory of dynamical system and statistical mechanics provide fundamental tools for the multiscale coupling problems. The paper presents some closed multiscale formulations, e.g., the mapping closure approximation, multiscale large-eddy simulation and statistical mesoscopic damage mechanics, for two typical multiscale coupling problems in mechanics, that is, turbulence in fluids and failure in solids. It is pointed that developing a tractable, closed nonequilibrium statistical theory may be an effective approach to deal with the multiscale coupling problems. Some common characteristics of the statistical theory are discussed.
Resumo:
The T-stress is considered as an important parameter in linear elastic fracture mechanics. In this paper, several closed form solutions of T-stress in plane elasticity crack problems in an infinite plate are investigated using the complex potential theory. In the line crack case, if the applied loading is the remote stress or the concentrated forces, the T-stress can be derived from the basic field. Here, the basic field is defined as the field caused by the applied loading in the infinite plate without the crack. For the circular are crack, the T-stress can be abstracted from a known solution. For the cusp crack problems, the T-stress can be separated from the obtained stress solution for which the conformal mapping technique is used.
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.
Resumo:
For a hungry fruit fly, locating and landing on a fermenting fruit where it can feed, find mates, and lay eggs, is an essential and difficult task requiring the integration of both olfactory and visual cues. Understanding how flies accomplish this will help provide a comprehensive ethological context for the expanding knowledge of their neural circuits involved in processing olfaction and vision, as well as inspire novel engineering solutions for control and estimation in computationally limited robotic applications. In this thesis, I use novel high throughput methods to develop a detailed overview of how flies track odor plumes, land, and regulate flight speed. Finally, I provide an example of how these insights can be applied to robotic applications to simplify complicated estimation problems. To localize an odor source, flies exhibit three iterative, reflex-driven behaviors. Upon encountering an attractive plume, flies increase their flight speed and turn upwind using visual cues. After losing the plume, flies begin zigzagging crosswind, again using visual cues to control their heading. After sensing an attractive odor, flies become more attracted to small visual features, which increases their chances of finding the plume source. Their changes in heading are largely controlled by open-loop maneuvers called saccades, which they direct towards and away from visual features. If a fly decides to land on an object, it begins to decelerate so as to maintain a stereotypical ratio of expansion to retinal size. Once they reach a stereotypical distance from the target, flies extend their legs in preparation for touchdown. Although it is unclear what cues they use to trigger this behavior, previous studies have indicated that it is likely under visual control. In Chapter 3, I use a nonlinear control theoretic analysis and robotic testbed to propose a novel and putative mechanism for how a fly might visually estimate distance by actively decelerating according to a visual control law. Throughout these behaviors, a common theme is the visual control of flight speed. Using genetic tools I show that the neuromodulator octopamine plays an important role in regulating flight speed, and propose a neural circuit for how this controller might be implemented in the flies brain. Two general biological and engineering principles are evident across my experiments: (1) complex behaviors, such as foraging, can emerge from the interactions of simple independent sensory-motor modules; (2) flies control their behavior in such a way that simplifies complex estimation problems.
Resumo:
Accurate simulation of quantum dynamics in complex systems poses a fundamental theoretical challenge with immediate application to problems in biological catalysis, charge transfer, and solar energy conversion. The varied length- and timescales that characterize these kinds of processes necessitate development of novel simulation methodology that can both accurately evolve the coupled quantum and classical degrees of freedom and also be easily applicable to large, complex systems. In the following dissertation, the problems of quantum dynamics in complex systems are explored through direct simulation using path-integral methods as well as application of state-of-the-art analytical rate theories.
MODIFIED DIRECT TWOS-COMPLEMENT PARALLEL ARRAY MULTIPLICATION ALGORITHM FOR COMPLEX MATRIX OPERATION
Resumo:
A direct twos-complement parallel array multiplication algorithm is introduced and modified for digital optical numerical computation. The modified version overcomes the problems encountered in the conventional optical twos-complement algorithm. In the array, all the summands are generated in parallel, and the relevant summands having the same weights are added simultaneously without carries, resulting in the product expressed in a mixed twos-complement system. In a two-stage array, complex multiplication is possible with using four real subarrays. Furthermore, with a three-stage array architecture, complex matrix operation is straightforwardly accomplished. In the experiment, parallel two-stage array complex multiplication with liquid-crystal panels is demonstrated.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High-resolution proxy records of climate, such as varves, ice cores, and tree-rings, provide the opportunity for reconstructing climate on a year-by-year basis. In order to do so it is necessary to approximate the complex nonlinear response function of the natural recording system using linear statistical models. Three problems with this approach were discussed, and possible solutions were suggested. Examples were given from a reconstruction of Santa Barbara precipitation based on tree-ring records from Santa Barbara County.
Resumo:
Mangrove, a tidal wetland, is a good example of complex land and water system whose resource attributes is neither fully understood from an ecological perspective nor valued comprehensively in economic terms. With increased ecological and social perception of the functions of wetlands, the utility and relative values will increase. The perception, however, varies from society to society. It must be recognized that mangrove forests differ greatly in local conditions and in their ability to produce a wide variety of economic products. What may be highly productive strategy for one country may have little meaning to its neighbor. Therefore, it becomes essential that from among diversity of potential uses of the mangrove environment, specific uses will have to be decided, and management plan developed on site, or area specific basis. It is therefore necessary to arrive at a balance between the views of the ecologists and economists on the management of mangroves. Biological conservation should encompass resource management in the sense that integrity of the biological and physical attributes of the resource base should be sustained and man-induced management practices should not alter an ecosystem to the extent that biological production is eliminated. Sustained yield management for food, fiber and fuel would serve to sustain local fisheries while generating new economic enterprises. This requires the recognition of mangrove environment as a resource with economic value, and managed according to local conditions and national priorities.
Resumo:
Large eddy simulation (LES) type studies are made of a realistic geometry coaxial nozzle with a pylon. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving Numerical LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier Stokes) model is used giving a hybrid NLES-RANS approach.The pylon is shown to influence the flow development, having a significant impact on peak turbulence levels and spreading rates. The results show that real geometry effects are influential and should be taken into account when moving towards real engine simulations. If their effects are ignored then, based on the studies here, key turbulence parameters will have significant error.