913 resultados para Compact Dual Band Planar Antenna


Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a novel high symmetry balun which significantly improves the performance of dipole-based dual-polarized antennas. The new balun structure provides enhanced differential capability leading to high performance in terms of port-to-port isolation and far-field cross polarization. An example antenna using this balun is proposed. The simulated results show 53.5% of fractional bandwidth within the band 1.71−2.96 GHz (VSWR<1.5) and port-to-port isolation >59 dB. The radiation characteristic shows around 9 dBi of gain and far-field cross polarization <−48 dBi over the entire bandwidth. The detailed balun functioning and full antenna measurements will be presented during the conference. Performance comparison with similar structures will be also provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An element spacing of less than half a wavelength introduces strong mutual coupling between the ports of compact antenna arrays. The strong coupling causes significant system performance degradation. A decoupling network may compensate for the mutual coupling. Alternatively, port decoupling can be achieved using a modal feed network. In response to an input signal at one of the input ports, this feed network excites the antenna elements in accordance with one of the eigenvectors of the array scattering parameter matrix. In this paper, a novel 4-element monopole array is described. The feed network of the array is implemented as a planar ring-type circuit in stripline with four coupled line sections. The new configuration offers a significant reduction in size, resulting in a very compact array.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The small element spacing of compact multiport arrays introduces strong mutual coupling between the antenna ports. Due to this coupling, the input impedance of the array changes when elements excitations are varied, and consequently, the array cannot be matched for an arbitrary excitation. Decoupling networks have in the past been used to provide an additional connection between antenna ports in order to cancel the coupling between elements. An alternative approach is to design the antenna so that each port does not excite a single element, but all elements simultaneously instead. The geometry of the antenna is optimized so that this direct excitation of elements counteracts the mutual coupling, thus yielding decoupled ports. This paper describes the design of such a 4-port antenna.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-linear planar response of a string to planar narrow band random excitation is investigated in this paper. A response equation for the mean square deflection σ2 is obtained under a single mode approximation by using the equivalent linearization technique. It is shown that the response is triple valued, as in the case of harmonic excitation, if the centre frequency of excitation Ω lies in a certain specified range. The triple valued response occurs only if the excitation bandwidth β is smaller than a critical value βcrit which is a monotonically increasing function of the intensity of excitation. An approximate method of investigating the almost sure asymptotic stability of the solution is presented and regions of instability in the Ω-σ2 plane have been charted. It is shown that planar response can become unstable either due to an unbounded growth of the in-plane component of motion or due to a spontaneous appearance of an out-of-plane component.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports the design of a compact low pass filter (LPF) with wide stop band region using trisection stepped impedance resonators in microstrip medium. Experimental results of a low pass filter designed at 1 GHz have been compared against the analytical and EM simulation results for the validation of the design. Results are satisfactorily matching each other. The maximum insertion of the measured filter is 0.2 dB and minimum return loss is 13.5 dB over the pass band. The stop band rejection is better than 20 dB from 1.5 GHz to 4.2 GHz and hence wide stop band performance is achieved. Overall size of the filter is 30 mm x 20 mm x 0.78 mm which is 0.1 lambda x 0.066 lambda. x 0.0026 lambda at 1 GHz. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presented in this paper is an improvement over a spring-steel dual-axis accelerometer that we had reported earlier.The fabrication process (which entails wire-cut electro discharge machining of easily accessible and inexpensive spring-steelfoil) and the sensing of the displacement (which is done using off-the-shelf Hall-effect sensors) remain the same. Theimprovements reported here are twofold: (i) the footprint of the packaged accelerometer is reduced from 80 mm square to 40mm square, and (ii) almost perfect de-coupling and symmetry are achieved between the two in-plane axes of the packageddevice as opposed to the previous embodiment where this was not the case. Good linearity with about 40 mV/g was measuredalong both the in-plane axes over a range of 0.1 to 1 g. The first two natural frequencies of the devices are at 30 Hz and 100Hz, respectively, as per the experiment. The highlights of this work are cost-effective processing, easy integration of the Hall-effect sensing capability on a customised printed circuit board, and inexpensive packaging without overly compromising eitherthe overall size or the sensitivity of the accelerometer. Through this work, we have reaffirmed the practicability of spring-steelaccelerometers towards the eventual goal of making it compete with micro machined silicon accelerometers in terms of sizeand performance. The cost is likely to be much lower for the spring-steel accelerometers than that of silicon accelerometers, especially when the volume of production is low and the sensor is to be used as a single packaged unit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.

Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.

However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.

Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.