935 resultados para Collapsed objects and Supernovae
Resumo:
This paper looks at the issue of privacy and anonymity through the prism of Scott's concept of legibility i.e. the desire of the state to obtain an ever more accurate mapping of its domain and the actors in its domain. We argue that privacy was absent in village life in the past, and it has arisen as a temporary phenomenon arising from the lack of appropriate technology to make all life in the city legible. Cities have been the loci of creativity for the major part of human civilisation. There is something specific about the illegibility of cities which facilitates creativity and innovation. By providing the technology to catalogue and classify all objects and ideas around us, this leads to a consideration of semantic web technologies, Linked Data and the Internet of Things as unwittingly furthering this ever greater legibility. There is a danger that the over description of a domain will lead to a loss in creativity and innovation. We conclude by arguing that our prime concern must be to preserve illegibility because the survival of some form, any form, of civilisation depends upon it.
Resumo:
In this study we aim to evaluate the impact of ageing and gender on different visual mental imagery processes. Two hundred and fifty-one participants (130 women and 121 men; age range = 18–77 years) were given an extensive neuropsychological battery including tasks probing the generation, maintenance, inspection, and transformation of visual mental images (Complete Visual Mental Imagery Battery, CVMIB). Our results show that all mental imagery processes with the exception of the maintenance are affected by ageing, suggesting that other deficits, such as working memory deficits, could account for this effect. However, the analysis of the transformation process, investigated in terms of mental rotation and mental folding skills, shows a steeper decline in mental rotation, suggesting that age could affect rigid transformations of objects and spare non-rigid transformations. Our study also adds to previous ones in showing gender differences favoring men across the lifespan in the transformation process, and, interestingly, it shows a steeper decline in men than in women in inspecting mental images, which could partially account for the mixed results about the effect of ageing on this specific process. We also discuss the possibility to introduce the CVMIB in clinical assessment in the context of theoretical models of mental imagery.
Resumo:
Current reform initiatives recommend that geometry instruction include the study of three-dimensional geometric objects and provide students with opportunities to use spatial skills in problem-solving tasks. Geometer's Sketchpad (GSP) is a dynamic and interactive computer program that enables the user to investigate and explore geometric concepts and manipulate geometric structures. Research using GSP as an instructional tool has focused primarily on teaching and learning two-dimensional geometry. This study explored the effect of a GSP based instructional environment on students' geometric thinking and three-dimensional spatial ability as they used GSP to learn three-dimensional geometry. For 10 weeks, 18 tenth-grade students from an urban school district used GSP to construct and analyze dynamic, two-dimensional representations of three-dimensional objects in a classroom environment that encouraged exploration, discussion, conjecture, and verification. The data were collected primarily from participant observations and clinical interviews and analyzed using qualitative methods of analysis. In addition, pretest and posttest measures of three-dimensional spatial ability and van Hiele level of geometric thinking were obtained. Spatial ability measures were analyzed using standard t-test analysis. ^ The data from this study indicate that GSP is a viable tool to teach students about three-dimensional geometric objects. A comparison of students' pretest and posttest van Hiele levels showed an improvement in geometric thinking, especially for students on lower levels of the van Hiele theory. Evidence at the p < .05 level indicated that students' spatial ability improved significantly. Specifically, the GSP dynamic, visual environment supported students' visualization and reasoning processes as students attempted to solve challenging tasks about three-dimensional geometric objects. The GSP instructional activities also provided students with an experiential base and an intuitive understanding about three-dimensional objects from which more formal work in geometry could be pursued. This study demonstrates that by designing appropriate GSP based instructional environments, it is possible to help students improve their spatial skills, develop more coherent and accurate intuitions about three-dimensional geometric objects, and progress through the levels of geometric thinking proposed by van Hiele. ^
Resumo:
Current reform initiatives recommend that school geometry teaching and learning include the study of three-dimensional geometric objects and provide students with opportunities to use spatial abilities in mathematical tasks. Two ways of using Geometer's Sketchpad (GSP), a dynamic and interactive computer program, in conjunction with manipulatives enable students to investigate and explore geometric concepts, especially when used in a constructivist setting. Research on spatial abilities has focused on visual reasoning to improve visualization skills. This dissertation investigated the hypothesis that connecting visual and analytic reasoning may better improve students' spatial visualization abilities as compared to instruction that makes little or no use of the connection of the two. Data were collected using the Purdue Spatial Visualization Tests (PSVT) administered as a pretest and posttest to a control and two experimental groups. Sixty-four 10th grade students in three geometry classrooms participated in the study during 6 weeks. Research questions were answered using statistical procedures. An analysis of covariance was used for a quantitative analysis, whereas a description of students' visual-analytic processing strategies was presented using qualitative methods. The quantitative results indicated that there were significant differences in gender, but not in the group factor. However, when analyzing a sub sample of 33 participants with pretest scores below the 50th percentile, males in one of the experimental groups significantly benefited from the treatment. A review of previous research also indicated that students with low visualization skills benefited more than those with higher visualization skills. The qualitative results showed that girls were more sophisticated in their visual-analytic processing strategies to solve three-dimensional tasks. It is recommended that the teaching and learning of spatial visualization start in the middle school, prior to students' more rigorous mathematics exposure in high school. A duration longer than 6 weeks for treatments in similar future research studies is also recommended.
Resumo:
Glass is a common form of trace evidence found at many scenes of crimes in the form of small fragments. These glass fragments can transfer to surrounding objects and/or persons and may provide forensic investigators valuable information to link a suspect to the scene of a crime. Since the elemental composition of different glass sources can be very similar, a highly discriminating technique is required to distinguish between fragments that have originated from different sources. ^ The research presented here demonstrates that Laser Induced Breakdown Spectroscopy (LIBS) is a viable analytical technique for the association and discrimination of glass fragments. The first part of this research describes the optimization of the LIBS experiments including the use of different laser wavelengths to investigate laser-material interaction. The use of a 266 nm excitation laser provided the best analytical figures of merit with minimal damage to the sample. The resulting analytical figures of merit are presented. The second part of this research evaluated the sensitivity of LIBS to associate or discriminate float glass samples originating from the same manufacturing plants and produced at approximately the same time period. Two different sample sets were analyzed ranging in manufacturing dates from days to years apart. Eighteen (18) atomic emission lines corresponding to the elements Sr, K, Fe, Ca, Al, Ba, Na, Mg and Ti, were chosen because of their detection above the method detection limits and for presenting differences between the samples. Ten elemental ratios producing the most discrimination were selected for each set. When all the ratios are combined in a comparison, 99% of the possible pairs were discriminated using the optimized LIBS method generating typical analytical precisions of ∼5% RSD. ^ The final study consisted of the development of a new approach for the use of LIBS as a quantitative analysis of ultra-low volume solution analysis using aerosols and microdrops. Laser induced breakdown spectroscopy demonstrated to be an effective technique for the analysis of as low as 90 pL for microdrop LIBS with 1 pg absolute LOD and 20 µL for aerosol LIBS with an absolute LOD of ∼100 fg.^
Resumo:
Context. The young associations offer us one of the best opportunities to study the properties of young stellar and substellar objects and to directly image planets thanks to their proximity (<200 pc) and age (≈5−150 Myr). However, many previous works have been limited to identifying the brighter, more active members (≈1 M_⊙) owing to photometric survey sensitivities limiting the detections of lower mass objects. Aims. We search the field of view of 542 previously identified members of the young associations to identify wide or extremely wide (1000−100 000 au in physical separation) companions. Methods. We combined 2MASS near-infrared photometry (J, H, K) with proper motion values (from UCAC4, PPMXL, NOMAD) to identify companions in the field of view of known members. We collated further photometry and spectroscopy from the literature and conducted our own high-resolution spectroscopic observations for a subsample of candidate members. This complementary information allowed us to assess the efficiency of our method. Results. We identified 84 targets (45: 0.2−1.3 M_⊙, 17: 0.08−0.2 M_⊙, 22: <0.08 M_⊙) in our analysis, ten of which have been identified from spectroscopic analysis in previous young association works. For 33 of these 84, we were able to further assess their membership using a variety of properties (X-ray emission, UV excess, Hα, lithium and K I equivalent widths, radial velocities, and CaH indices). We derive a success rate of 76–88% for this technique based on the consistency of these properties. Conclusions. Once confirmed, the targets identified in this work would significantly improve our knowledge of the lower mass end of the young associations. Additionally, these targets would make an ideal new sample for the identification and study of planets around nearby young stars. Given the predicted substellar mass of the majority of these new candidate members and their proximity, high-contrast imaging techniques would facilitate the search for new low-mass planets.
Resumo:
The coupling of mechanical stress fields in polymers to covalent chemistry (polymer mechanochemistry) has provided access to previously unattainable chemical reactions and polymer transformations. In the bulk, mechanochemical activation has been used as the basis for new classes of stress-responsive polymers that demonstrate stress/strain sensing, shear-induced intermolecular reactivity for molecular level remodeling and self-strengthening, and the release of acids and other small molecules that are potentially capable of triggering further chemical response. The potential utility of polymer mechanochemistry in functional materials is limited, however, by the fact that to date, all reported covalent activation in the bulk occurs in concert with plastic yield and deformation, so that the structure of the activated object is vastly different from its nascent form. Mechanochemically activated materials have thus been limited to “single use” demonstrations, rather than as multi-functional materials for structural and/or device applications. Here, we report that filled polydimethylsiloxane (PDMS) elastomers provide a robust elastic substrate into which mechanophores can be embedded and activated under conditions from which the sample regains its original shape and properties. Fabrication is straightforward and easily accessible, providing access for the first time to objects and devices that either release or reversibly activate chemical functionality over hundreds of loading cycles.
While the mechanically accelerated ring-opening reaction of spiropyran to merocyanine and associated color change provides a useful method by which to image the molecular scale stress/strain distribution within a polymer, the magnitude of the forces necessary for activation had yet to be quantified. Here, we report single molecule force spectroscopy studies of two spiropyran isomers. Ring opening on the timescale of tens of milliseconds is found to require forces of ~240 pN, well below that of previously characterized covalent mechanophores. The lower threshold force is a combination of a low force-free activation energy and the fact that the change in rate with force (activation length) of each isomer is greater than that inferred in other systems. Importantly, quantifying the magnitude of forces required to activate individual spiropyran-based force-probes enables the probe behave as a “scout” of molecular forces in materials; the observed behavior of which can be extrapolated to predict the reactivity of potential mechanophores within a given material and deformation.
We subsequently translated the design platform to existing dynamic soft technologies to fabricate the first mechanochemically responsive devices; first, by remotely inducing dielectric patterning of an elastic substrate to produce assorted fluorescent patterns in concert with topological changes; and second, by adopting a soft robotic platform to produce a color change from the strains inherent to pneumatically actuated robotic motion. Shown herein, covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation into value-added, constructive covalent chemical responses. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional actuating device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the actuator in a way that might also be coupled to feedback loops that allow autonomous, self-regulation of activity.
In the future, both the specific material and the general approach should be useful in enriching the responsive functionality of soft elastomeric materials and devices. We anticipate the development of new mechanophores that, like the materials, are reversibly and repeatedly activated, expanding the capabilities of soft, active devices and further permitting dynamic control over chemical reactivity that is otherwise inaccessible, each in response to a single remote signal.
Resumo:
In this thesis I argue that dominant ways of imagining modernity constitute a modern imaginary that carries with it particular expectations concerning modern places, spaces, emotions, and affects as well as expectations concerning the place of religion and enchantment in the modern world. I argue that this modern imaginary and the expectations it entails works to conceal and trivialize supra-rational beliefs and behaviours in scholarship but also in the lives of individuals. I focus on one particular subset of the supra-rational beliefs and behaviours that modern imaginary conceals and trivializes, namely beliefs and behaviours associated with lucky and protective objects. I also focus on the ways the modern imaginary conceals the presence and prevalence of these objects and the beliefs and behaviours they entail in one particular context, namely Montréal, Québec. I argue that these supra-rational beliefs and behaviours constitute a subjunctive mode for understanding and experiencing daily life and describe how the modern imaginary works to discredit this subjunctive register. Finally, I argue that scholars must begin to recognize and examine this subjunctive mode and the playful engagement with half-belief it involves.
Resumo:
The intention of this thesis, “Ceramics in Britain (1840–90): Meanings and Metaphors” is to present new approaches for interpreting ceramics in nineteenth-century Britain by situating, problematizing, and contextualizing pottery and porcelain in the popular debates of the day within the methodologies of material culture, design, cultural and art histories. I ask how did ceramics—portable, functional, and often decorative objects—contribute to shaping modes of experiences? Crockery, tableware and blue-white-porcelain, admittedly largely mediated in texts and paintings, are at the centre of this research to examine how they imposed symbolism and influenced the engagement of their subjects beyond their intended meanings and functions. This thesis tracks a common rhetoric shared by writers and artists across genres and understood by readers and viewers: crockery in the cupboard, on the mantel, the table or the floor were popular motifs exemplifying class, gender, character, etiquette, and taste. This thesis also seeks to map ceramics’ relations with other objects and people depicted. Their meanings and metaphors changed, depending on their exchange with other objects in the room and who uses them. The conventions of representing ceramics dictated a particular grammar that writers and artists used, critiqued, discarded or personalized. The examination of ceramics mediated in text and image especially in comparison with extant objects invites a deeper probing of both material culture and artistic practice, which helps to situate the agency of the ceramic objects themselves. Also this thesis, in attempt to explore new methodological approaches for ceramic studies, examines the social life of the mid-Victorian relief-moulded “Minster” Jug in the Gardiner Museum in Toronto. The product originating in Staffordshire in 1843 and exported to the colonies holds significance due to its multiple life histories. Viewing the “Minster” through the lenses of curator, collector, consumer, and critic its layered lives unfold to reveal the protocols of museum praxis as well as important aspects of mid-nineteenth-century British society related to design reform, gender, imperialism and consumption patterns. This thesis contends that the British experienced ceramics in sometimes unexpected ways, unrelated to their original purpose, such as tools of violence or containers of solace, and transformative fantasy.
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.
Resumo:
This paper deals with the relationship between different sets of archaeological legislation, material culture and communities. First it presents a historical sketch of the heritage legislation in the West and its contemporary uses. Secondly, it shows how alternative archaeological agencies, such as community archaeology, deal with these problems. The discussion is especially relevant in Brazil, where contract archaeology is presently overwhelming, and the issue is raised in the last part of the paper.
Resumo:
Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound–bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic R-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co III has been generated using GRASP0 by including the dominant 3d7, 3d6[4s, 4p], 3p43d9 and 3p63d9 configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co III. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co II and compared directly with existing work.
Resumo:
This paper describes the development and evaluation of web-based museum trails for university-level design students to access on handheld devices in the Victoria and Albert Museum (V&A) in London. The trails offered students a range of ways of exploring the museum environment and collections, some encouraging students to interpret objects and museum spaces in lateral and imaginative ways, others more straightforwardly providing context and extra information. In a three-stage qualitative evaluation programme, student feedback showed that overall the trails enhanced students’ knowledge of, interest in, and closeness to the objects. However, the trails were only partially successful from a technological standpoint due to device and network problems. Broader findings suggest that technology has a key role to play in helping to maintain the museum as a learning space which complements that of universities as well as schools. This research informed my other work in visitor-constructed learning trails in museums, specifically in the theoretical approach to data analysis used, in the research design, and in informing ways to structure visitor experiences in museums. It resulted in a conference presentation, and more broadly informed my subsequent teaching practice.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A lightweight Java application suite has been developed and deployed allowing collaborative learning between students and tutors at remote locations. Students can engage in group activities online and also collaborate with tutors. A generic Java framework has been developed and applied to electronics, computing and mathematics education. The applications are respectively: (a) a digital circuit simulator, which allows students to collaborate in building simple or complex electronic circuits; (b) a Java programming environment where the paradigm is behavioural-based robotics, and (c) a differential equation solver useful in modelling of any complex and nonlinear dynamic system. Each student sees a common shared window on which may be added text or graphical objects and which can then be shared online. A built-in chat room supports collaborative dialogue. Students can work either in collaborative groups or else in teams as directed by the tutor. This paper summarises the technical architecture of the system as well as the pedagogical implications of the suite. A report of student evaluation is also presented distilled from use over a period of twelve months. We intend this suite to facilitate learning between groups at one or many institutions and to facilitate international collaboration. We also intend to use the suite as a tool to research the establishment and behaviour of collaborative learning groups. We shall make our software freely available to interested researchers.