312 resultados para Coenzyme A Ligases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Osteoporosis is a disease of bone metabolism in which bisphosphonates (BPS) are the most common medications used in its treatment, whose main objective is to reduce the risk of fractures. The aim of this study was to conduct a systematic review on BPs adherence for treatment of osteoporosis. Methods. Systematic review of articles on BPs adherence for treatment of osteoporosis, indexed on MEDLINE (via PubMed) databases, from inception of databases until January 2013. Search terms were Adherence, Medication (MeSH term), Bisphosphonates (MeSH term), and Osteoporosis (MeSH term). Results: Of the 78 identified studies, 27 met the eligibility criteria. Identified studies covered a wide range of aspects regarding adherence and associated factors, adherence and fracture, adherence and BPs dosage. The studies are mostly observational, conducted with women over 45 years old, showing low rates of adherence to treatment. Several factors may influence adherence: socio-economic and cultural, participation of physicians when guidance is given to the patient, the use of bone turnover markers, and use of generic drugs. The monthly dosage is associated with greater adherence compared to weekly dosage. Conclusions: Considering the methodological differences between the studies, the results converge to show that adherence to treatment of osteoporosis with BPs is still inadequate. Further experimental studies are needed to evaluate the adherence and suggest new treatment options. © 2013 Vieira et al.; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin is an important regulator of the ubiquitin-proteasome system (UPS) and of lysosomal proteolysis in cardiac muscle. However, the role of insulin in the regulation of the muscle atrophy-related Ub-ligases atrogin-1 and MuRF1 as well as in autophagy, a major adaptive response to nutritional stress, in the heart has not been characterized. We report here that acute insulin deficiency in the cardiac muscle of rats induced by streptozotocin increased the expression of atrogin-1 and MuRF1 as well as LC3 and Gabarapl1, 2 autophagy-related genes. These effects were associated with decreased phosphorylation levels of Akt and its downstream target Foxo3a; this phenomenon is a well-known effect that permits the maintenance of Foxo in the nucleus to activate protein degradation by proteasomal and autophagic processes. The administration of insulin increased Akt and Foxo3a phosphorylation and suppressed the diabetes-induced expression of Ub-ligases and autophagy-related genes. In cultured neonatal rat cardiomyocytes, nutritional stress induced by serum/glucose deprivation strongly increased the expression of Ub-ligases and autophagy-related genes; this effect was inhibited by insulin. Furthermore, the addition of insulin in vitro prevented the decrease in Akt/Foxo signaling induced by nutritional stress. These findings demonstrate that insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes, most likely through the phosphorylation of Akt and the inactivation of Foxo3a. © Georg Thieme Verlag KG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was aimed to evaluate the influence of vitamin D (VD) deficiency on cardiac metabolism, morphology, and function. Thus, we investigated the relationship of these changes with the length of the nutrient restriction. Male weanling Wistar rats were allocated into 4 groups: C2 (n=24), animals were fed an AIN-93G diet with 1000 IU VD/kg of chow and were kept under fluorescent light for 2 months; D2 (n=22), animals were fed a VD-deficient AIN-93G diet and were kept under incandescent light for 2 months; C4 (n=21) animals were kept in the same conditions of C2 for 4 months; and D4 (n=23) animals were kept in the same conditions of D2 for 4 months. Biochemical analyses showed lower β-hydroxyacyl coenzyme-A dehydrogenase activity and higher lactate dehydrogenase activity in VD-deficient animals. Furthermore, VD deficiency was related to increased cytokines release, oxidative stress, apoptosis, and fibrosis. Echocardiographic data showed left ventricular hypertrophy and lower fractional shortening and ejection fraction in VD-deficient animals. Difference became evident in the lactate dehydrogenase activity, left ventricular weight, right ventricle weight, and left ventricular mass after 4 months of VD deficiency. Our data indicate that VD deficiency is associated with energetic metabolic changes, cardiac inflammation, oxidative stress, fibrosis and apoptosis, cardiac hypertrophy, left chambers alterations, and systolic dysfunction. Furthermore, length of the restriction influenced these cardiac changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: Methanogenic archaeans are organisms of considerable ecological and biotechnological interest that produce methane through a restricted metabolic pathway, which culminates in the reaction catalyzed by the Methyl-coenzyme M reductase (Mcr) enzyme, and results in the release of methane. Using a metagenomic approach, the gene of the a subunit of mcr (mcrα) was isolated from sediment sample from an anoxic zone, rich in decomposing organic material, obtained from the Tucuruí hydroelectric dam reservoir in eastern Brazilian Amazonia. The partial nucleotide sequences obtained were 83 to 95% similar to those available in databases, indicating a low diversity of archaeans in the reservoir. Two orders were identified -the Methanomicrobiales, and a unique Operational Taxonomic Unit (OTU) forming a clade with the Methanosarcinales according to low bootstrap values. Homology modeling was used to determine the three-dimensional (3D) structures, for this the partial nucleotide sequence of the mcrα were isolated and translated on their partial amino acid sequences. The 3D structures of the archaean mcrα observed in the present study varied little, and presented approximately 70% identity in comparison with the mcrα of Methanopyrus klanderi. The results demonstrated that the community of methanogenic archaeans of the anoxic C1 region of the Tucurui reservoir is relatively homogeneous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: skeletal muscles are dynamic tissue that can change their phenotypic characteristics providing a better functional adaptation to different stimuli. L-thyroxine is a hormone produced by the thyroid gland and has been used as an experimental model for stimulation of oxidative stress in skeletal muscle. Coenzyme Q10 (CoQ10) is a fat-soluble provitamin endogenously synthesized and found naturally in foods such red meat, fish, cereals, broccoli and spinach. It has antioxidant properties and potential in the treatment of degenerative and neuromuscular diseases. Objective: to evaluate the protective effect of CoQ10 in the soleus muscle of rats against the oxidative damage caused by L-thyroxine. Methods: the rats were divided in four groups of six animals each: Group 1 (control); Group 2 (coenzyme Q10); Group 3 (L-thyroxine), and Group 4 coenzyme Q10 and L-thyroxine). After euthanasia, blood was collected and serum activity of the enzymes creatine kinase (CK) and aspartate aminotransferase (AST) was analyzed. In the soleus muscle homogenates the factors related to oxidative stress were assessed. Results: CoQ10 protected the soleus muscle against the damage caused by L-thyroxine and favored the maintenance of the antioxidant enzymes glutathione reductase and glutathione peroxidase, the concentration of decreased and oxidized glutathione, and prevented lipid peroxidation. Conclusion: the results indicate that CoQ10 protects rat soleus muscle from oxidative damage caused by L-thyroxine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes mellitus is a product of low insulin sensibility and pancreatic beta-cell insufficiency. Rats with streptozotocin-induced diabetes during the neonatal period by the fifth day of age develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, polyuria, and polydipsia aggravated by insulin resistance in adulthood. In this study, we investigated whether the effect of long-term treatment with melatonin can improve insulin resistance and other metabolic disorders in these animals. At the fourth week of age, diabetic animals started an 8-wk treatment with melatonin (1 mg/kg body weight) in the drinking water at night. Animals were then killing, and the sc, epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed, and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Blood samples were collected for biochemical assays. Melatonin treatment reduced hyperglycemia, polydipsia, and polyphagia as well as improved insulin resistance as demonstrated by constant glucose disappearance rate and homeostasis model of assessment-insulin resistance. However, melatonin treatment was unable to recover body weight deficiency, fat mass, and adipocyte size of diabetic animals. Adiponectin and fructosamine levels were completely recovered by melatonin, whereas neither plasma insulin level nor insulin secretion capacity was improved in diabetic animals. Furthermore, melatonin caused a marked delay in the sexual development, leaving genital structures smaller than those of nontreated diabetic animals. Melatonin treatment improved the responsiveness of adipocytes to insulin in diabetic animals measured by tests of glucose uptake (sc, EP, and RP), glucose oxidation, and incorporation of glucose into lipids (EP and RP), an effect that seems partially related to an increased expression of insulin receptor substrate 1, acetyl-coenzyme A carboxylase and fatty acid synthase. In conclusion, melatonin treatment was capable of ameliorating the metabolic abnormalities in this particular diabetes model, including insulin resistance and promoting a better long-term glycemic control. (Endocrinology 153: 2178-2188, 2012)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.