986 resultados para Coding Region


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Results: Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Conclusions: Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the coding region of telomerase complex genes can result in accelerated telomere attrition and human disease. Manifestations of telomere disease include the bone marrow failure syndromes dyskeratosis congenita and aplastic anemia, acute myeloid leukemia, liver cirrhosis, and pulmonary fibrosis. Here, we describe a mutation in the CCAAT box (GCAAT) of the TERC gene promoter in a family in which multiple members had typical features of telomeropathy. The genetic alteration in this critical regulatory sequence resulted in reduced reporter gene activity and absent binding of transcription factor NF-Y, likely responsible for reduced TERC levels, decreased telomerase activity, and short telomeres. This is the first description of a pathogenic mutation in the highly con-served CCAAT box and the first instance of a mutation in the promoter region of TERC producing a telomeropathy. We propose that current mutation-screening strategies should include gene promoter regions for the diagnosis of telomere diseases. This clinical trial was registered at www.clinicaltrials.gov as #NCT00071045. (Blood. 2012;119(13):3060-3063)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schizophrenia is a severe psychiatric disorder with frequent recurrent psychotic relapses and progressive functional impairment. It results from a poorly understood gene-environment interaction. The gene encoding catechol-O-methyltransferase (COMT) is a likely candidate for schizophrenia. Its rs165599 (A/G) polymorphism has been shown to be associated with alteration of COMT gene expression. Therefore, the present study aimed to investigate a possible association between schizophrenia and this polymorphism. The distribution of the alleles and genotypes of this polymorphism was investigated in a Brazilian sample of 245 patients and 834 controls. The genotypic frequencies were in Hardy-Weinberg equilibrium and no statistically significant differences were found between cases and controls when analyzed according to gender or schizophrenia subtypes. There was also no difference in homozygosis between cases and controls. Thus, in the sample studied, there was no evidence of any association between schizophrenia and rs165599 (A/G) polymorphism in the non-coding region 3' of the COMT gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The non-classical human leukocyte antigen (HLA) class I genes present a very low rate of variation. So far, only 10 HLA-E alleles encoding three proteins have been described, but only two are frequently found in worldwide populations. Because of its historical background, Brazilians are very suitable for population genetic studies. Therefore, 104 bone marrow donors from Brazil were evaluated for HLA-E exons 14. Seven variation sites were found, including two known single nucleotide polymorphisms (SNPs) at positions +424 and +756 and five new SNPs at positions +170 (intron 1), +1294 (intron 3), +1625, +1645 and +1857 (exon 4). Haplotyping analysis did show eight haplotypes, three of them known as E*01:01:01, E*01:03:01 and E*01:03:02:01 and five HLA-E new alleles that carry the new variation sites. The HLA-E*01:01:01 allele was the predominant haplotype (62.50%), followed by E*01:03:02:01 (24.52%). Selective neutrality tests have disclosed an interesting pattern of selective pressures in which balancing selection is probably shaping allele frequency distributions at an SNP at exon 3 (codon 107), sequence diversity at exon 4 and the non-coding regions is facing significant purifying pressure. Even in an admixed population such as the Brazilian one, the HLA-E locus is very conserved, presenting few polymorphic SNPs in the coding region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genes involved in host-pathogen interactions are often strongly affected by positive natural selection. The Duffy antigen, coded by the Duffy antigen receptor for chemokines (DARC) gene, serves as a receptor for Plasmodium vivax in humans and for Plasmodium knowlesi in some nonhuman primates. In the majority of sub-Saharan Africans, a nucleic acid variant in GATA-1 of the gene promoter is responsible for the nonexpression of the Duffy antigen on red blood cells and consequently resistance to invasion by P. vivax. The Duffy antigen also acts as a receptor for chemokines and is expressed in red blood cells and many other tissues of the body. Because of this dual role, we sequenced a 3,000-bp region encompassing the entire DARC gene as well as part of its 5' and 3' flanking regions in a phylogenetic sample of primates and used statistical methods to evaluate the nature of selection pressures acting on the gene during its evolution. We analyzed both coding and regulatory regions of the DARC gene. The regulatory analysis showed accelerated rates of substitution at several sites near known motifs. Our tests of positive selection in the coding region using maximum likelihood by branch sites and maximum likelihood by codon sites did not yield statistically significant evidence for the action of positive selection. However, the maximum likelihood test in which the gene was subdivided into different structural regions showed that the known binding region for P. vivax/P. knowlesi is under very different selective pressures than the remainder of the gene. In fact, most of the gene appears to be under strong purifying selection, but this is not evident in the binding region. We suggest that the binding region is under the influence of two opposing selective pressures, positive selection possibly exerted by the parasite and purifying selection exerted by chemokines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJETIVO: Investigar a presença de variantes nos genes TAC3 e TACR3, os quais codificam a NKB e seu receptor (NK3R), respectivamente, em uma coorte de pacientes com distúrbios puberais centrais idiopáticos. SUJEITOS E MÉTODOS: Duzentos e trinta e sete pacientes foram estudados: 114 com puberdade precoce central (PPC), 73 com hipogonadismo hipogonadotrófico isolado normósmico (HHI) e 50 com retardo constitucional do crescimento e desenvolvimento (RCCD). O grupo controle consistiu de 150 indivíduos brasileiros que apresentaram desenvolvimento puberal normal. O DNA genômico foi extraído de sangue periférico, e as regiões codificadoras dos genes TAC3 e TACR3 foram amplificadas e sequenciadas automaticamente. RESULTADOS: Uma variante (p.A63P) foi identificada na NKB, e quatro variantes, p.G18D, p.L58L (c.172C>T), p.W275X e p.A449S, foram identificadas no NK3R, as quais foram ausentes no grupo controle. A variante p.A63P foi identificada em uma menina com PPC, e a variante p.A449S, em uma menina com RCCD. As variantes previamente descritas, p.G18D, p.L58L e p.W275X, foram identificadas em três indivíduos com HHI normósmico do sexo masculino não relacionados. CONCLUSÃO: Variantes raras nos genes TAC3 e TACR3 foram identificadas em pacientes com distúrbios puberais centrais idiopáticos. Mutações de perda de função no gene TACR3 foram associadas com o fenótipo de HHI normósmico. Arq Bras Endocrinol Metab. 2012;56(9):646-52

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a high incidence of pituitary-dependent hyperadrenocorticism (PDH) in Poodle dogs, with family members being affected by the disease, suggesting a genetic involvement. Tpit is an obligate transcription factor for the expression of pro-opiomelanocortingene and for corticotroph terminal differentiation. The aim of the present study was to screen the Tpit gene for germline mutations in Poodles with PDH. Fifty Poodle dogs (33 female, 8.71 +/- 2.8 years) with PDH and 50 healthy Poodle dogs (32 females, 9.4241 2.8 years) were studied. Genomic DNA was isolated from peripheral blood, amplified by PCR and submitted to automatic sequence. No mutation in the coding region of Tpit was found, whereas the new single nucleotide polymorphism p.S343G, in heterozygous state, was found in the same frequency in both PDH and control groups. We concluded that Tpit gain-of-function mutations are not involved in the etiology of PDH in Poodle dogs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Mutations in GH-releasing hormone receptor gene (GHRHR) are emerging as the most common cause of autosomal recessive isolated GH deficiency (IGHD). Objective: To search for GHRHR mutations in patients with familial or sporadic IGHD and to investigate founder effects in recurring mutations. Methods: The coding region of GHRHR was entirely amplified and sequenced from DNA of 18 patients with IGHD (16 unrelated) with topic posterior pituitary lobe on MRI. Haplotypes containing promoter SNPs and microsatellites flanking GHRHR were analyzed in patients with c.57+1G>A (IVS1+1G>A) mutation of our previously published kindred and also a Brazilian patient and 2 previously reported Japanese sisters with c. 1146G>A (p.E382E) mutation. Results: A novel homozygous intronic GHRHR c.752-1G>A (IVS7-1G>A) mutation, predicting loss of the constitutive splice acceptor site, was identified in two siblings with IGHD. A compound heterozygous c.[57+1G>A];[1146G>A] and a heterozygous c.527C>T (p.A176V) were found in two sporadic cases. Haplotype analysis provided evidence for a founder effect for the c.57+1G>A mutation and independent recurrence for the c.1146G>A mutation. Conclusion: We report a novel splice-disrupting mutation in GHRHR in 2 siblings and provide evidence that all c.57+1G>A (IVS1+1G>A) mutant chromosomes have the same haplotype ancestor, indicating the occurrence of a founder effect in Brazilian patients with IGHD. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background About 130 million people are infected with the hepatitis C virus (HCV) worldwide, but effective treatment options are not yet available. One of the most promising targets for antiviral therapy is nonstructural protein 3 (NS3). To identify possible changes in the structure of NS3 associated with virological sustained response or non-response of patients, a model was constructed for each helicase NS3 protein coding sequence. From this, the goal was to verify the interaction between helicases variants and their ligands. Findings Evidence was found that the NS3 helicase portion of non-responder patients contained substitutions in its ATP and RNA binding sites. K210E substitution can cause an imbalance in the distribution of loads, leading to a decrease in the number of ligations between the essential amino acids required for the hydrolysis of ATP. W501R substitution causes an imbalance in the distribution of loads, leading and forcing the RNA to interact with the amino acid Thr269, but not preventing binding of ribavirin inhibitor. Conclusions Useful information is provided on the genetic profiling of the HCV genotype 3, specifically the coding region of the NS3 protein, improving our understanding of the viral genome and the regions of its protein catalytic site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background ArtinM is a D-mannose-specific lectin from Artocarpus integrifolia seeds that induces neutrophil migration and activation, degranulation of mast cells, acceleration of wound healing, induction of interleukin-12 production by macrophages and dendritic cells, and protective T helper 1 immune response against Leishmania major, Leishmania amazonensis and Paracoccidioides brasiliensis infections. Considering the important biological properties of ArtinM and its therapeutic applicability, this study was designed to produce high-level expression of active recombinant ArtinM (rArtinM) in Escherichia coli system. Results The ArtinM coding region was inserted in pET29a(+) vector and expressed in E. coli BL21(DE3)-Codon Plus-RP. The conditions for overexpression of soluble ArtinM were optimized testing different parameters: temperatures (20, 25, 30 or 37°C) and shaking speeds (130, 200 or 220 rpm) during induction, concentrations of the induction agent IPTG (0.01-4 mM) and periods of induction (1-19 h). BL21-CodonPlus(DE3)-RP cells induced under the optimized conditions (incubation at 20°C, at a shaking speed of 130 rpm, induction with 0.4 mM IPTG for 19 h) resulted in the accumulation of large amounts of soluble rArtinM. The culture provided 22.4 mg/L of rArtinM, which activity was determined by its one-step purification through affinity chromatography on immobilized D-mannose and glycoarray analysis. Gel filtration showed that rArtinM is monomeric, contrasting with the tetrameric form of the plant native protein (jArtinM). The analysis of intact rArtinM by mass spectrometry revealed a 16,099.5 Da molecular mass, and the peptide mass fingerprint and esi-cid-ms/ms of amino acid sequences of peptides from a tryptic digest covered 41% of the total ArtinM amino acid sequence. In addition, circular dichroism and fluorescence spectroscopy of rArtinM indicated that its global fold comprises β-sheet structure. Conclusions Overall, the optimized process to express rArtinM in E. coli provided high amounts of soluble, correctly folded and active recombinant protein, compatible with large scale production of the lectin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global dengue virus spread in tropical and sub-tropical regions has become a major international public health concern. It is evident that DENV genetic diversity plays a significant role in the immunopathology of the disease and that the identification of polymorphisms associated with adaptive responses is important for vaccine development. The investigation of naturally occurring genomic variants may play an important role in the comprehension of different adaptive strategies used by these mutants to evade the human immune system. In order to elucidate this role we sequenced the complete polyprotein-coding region of thirty-three DENV-3 isolates to characterize variants circulating under high endemicity in the city of São José de Rio Preto, Brazil, during the onset of the 2006-07 epidemic. By inferring the evolutionary history on a local-scale and estimating rates of synonymous (dS) and nonsynonimous (dN) substitutions, we have documented at least two different introductions of DENV-3 into the city and detected 10 polymorphic codon sites under significant positive selection (dN/dS > 1) and 8 under significant purifying selection (dN/dS < 1). We found several polymorphic amino acid coding sites in the envelope (15), NS1 (17), NS2A (11), and NS5 (24) genes, which suggests that these genes may be experiencing relatively recent adaptive changes. Furthermore, some polymorphisms correlated with changes in the immunogenicity of several epitopes. Our study highlights the existence of significant and informative DENV variability at the spatio-temporal scale of an urban outbreak.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the recent years TNFRSF13B coding variants have been implicated by clinical genetics studies in Common Variable Immunodeficiency (CVID), the most common clinically relevant primary immunodeficiency in individuals of European ancestry, but their functional effects in relation to the development of the disease have not been entirely established. To examine the potential contribution of such variants to CVID, the more comprehensive perspective of an evolutionary approach was applied in this study, underling the belief that evolutionary genetics methods can play a role in dissecting the origin, causes and diffusion of human diseases, representing a powerful tool also in human health research. For this purpose, TNFRSF13B coding region was sequenced in 451 healthy individuals belonging to 26 worldwide populations, in addition to 96 control, 77 CVID and 38 Selective IgA Deficiency (IgAD) individuals from Italy, leading to the first achievement of a global picture of TNFRSF13B nucleotide diversity and haplotype structure and making suggestion of its evolutionary history possible. A slow rate of evolution, within our species and when compared to the chimpanzee, low levels of genetic diversity geographical structure and the absence of recent population specific selective pressures were observed for the examined genomic region, suggesting that geographical distribution of its variability is more plausibly related to its involvement also in innate immunity rather than in adaptive immunity only. This, together with the extremely subtle disease/healthy samples differences observed, suggests that CVID might be more likely related to still unknown environmental and genetic factors, rather than to the nature of TNFRSF13B variants only.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lung transplantation is a widely accepted therapeutic option for end stage lung disease. Clinical outcome is yet challenged by primary graft failure responsible for the majority of the early mortality, by chronic allograft dysfunction and chronic rejection accounting for more than 30% of deaths after the third postoperative year. Pulmonary surfactant proteins (SP) A, B, C and D are one of the first host defense mechanisms the lung can mount. SP-A in particular, produced by the type II pneumocytes, is active in the innate and adaptive immune system being an opsonin, but also regulating the macrophage and lymphocyte response. The main hypothesis for this project is that pulmonary surfactant protein A polymorphism may determine the early and long term lung allograft survival. Of note SP-A biologic activity seems to be genetically determined and SP-A polymorphisms have been associated to various lung disease. The two SP-A genes SP-A1 and SP-A2 have several polymorphisms within the coding region, SP-A1 (6A, 6A2-20), and SP-A2(1A, 1A0-13). The SP-A gene expression is regulated by cAMP, TTF-1 and glucocorticoids. In vitro studies have indicated that SP-A1 and SP-A2 gene variants may have a variable response to glucocorticoids. We proposed to determine if SP-A gene polymorphism predicts primary graft dysfunction and/or chronic lung allograft dysfunction and if SP-A may serve as a biomarker of lung allograft dysfunction. We also proposed to study the interaction between immunosuppressive drugs and SP-A expression and determine whether this is dependent on SP-A polymorphisms. This study will generate novel information improving our understanding of lung allograft dysfunction. It is conceivable that the information will stimulate the interest for a multi centre study to investigate if SP-A polymorphism may be integrated in the donor lung selection criteria and/or to implement post transplant tailored immunosuppression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antigen-kodierende RNA wird als eine sichere und effiziente Alternative zu traditionellen Impfstoff-Formulierungen, wie Peptid-, Protein-, rekombinanten viralen oder DNA basierten Impfstoffen betrachtet. Der endgültige klinische Nutzen RNA-basierter Impfstoffe wird von der Optimierung verschiedener Parameter abhängig sein, die zur Induktion und effizienten Expansion der humoralen und zellvermittelten Immunantwort beitragen. Vor diesem Hintergrund war die Zielsetzung der vorliegenden Arbeit, die Etablierung pharmakologischer und immunologischer Parameter für die Generierung effektiver Immunantworten durch RNA-Impfstoffe sowie deren Wirksamkeit in vitro und im Mausmodell unter Nutzung von Modellantigenen zu testen. Zur Untersuchung und Optimierung der RNA-Pharmakokinetik, als einem Schlüsselaspekt der klinischen Medikamentenentwicklung, wurde der Einfluss von strukturellen Modifikationen auf die Transkriptstabilität und Translationseffizienz von Reporter-Proteinen in einer zeitabhängigen Kinetik evaluiert. Es wurde gezeigt, dass ein poly(A) Schwanz von 120 Adenosinen, verglichen mit einem kürzeren, ein freies 3´ poly(A) Ende, verglichen mit einem verdeckten und eine doppelte β-globin 3´ UTR, unabhängig voneinander zu einer Erhöhung der IVT-RNA Stabilität und zu einer Verbesserung der Translationseffizienz beitrugen und dadurch insgesamt zu einer erhöhten Proteinexpression führten. Antigen-kodierende IVT-RNA mit diesen molekularen Merkmalen in Kombination führte, im Vergleich zur Standard IVT-RNA, zu einer erhöhten Dichte und Stabilität von Peptid/MHC-Komplexen auf der Zelloberfläche transfizierter DCs und dadurch zu einer verbesserten Stimulation von CD4+ und CD8+ T-Zellen im murinen und humanen System. Mit dem Ziel, die RNA kodierte Antigenform für die Induktion einer verstärkten Antikörperantwort zu modifizieren, wurde im zweiten Teil der Arbeit ein Antigen-IgM Fusionskonstrukt hergestellt und hinsichtlich seiner Eignung als neues Impfstoff-Format untersucht. Die Ausgangshypothese, dass die RNA kodierten Antigen-IgM Fusionsproteine polymerisieren, von transfizierten Zellen sezerniert werden und aufgrund der repetitiven Antigenstruktur im Vergleich mit dem monomeren Antigen zu einer Verstärkung der Antikörperantwort führen, wurde in vitro und in vivo im Mausmodell bestätigt. Die Entwicklung und Evaluierung von Zytokinfusionsproteinen zur selektiven Verstärkung der antigenspezifischen Immunantworten bildeten den dritten Schwerpunkt der vorliegenden Arbeit. Zur weiteren Verstärkung der Antikörperantwort wurde basierend auf den Resultaten aus dem zweiten Teil ein IL2-IgM Fusionskonstrukt hergestellt. Die Ko-Transfektion von Antigen-IgM und IL2-IgM kodierender IVT-RNA führte zu einer signifikant stärkeren Antikörperantwort als die Ko-Transfektion von Antigen-IgM und IL2. Für die Initiierung einer erfolgreichen anti-Tumor-Immunantwort ist das Priming antigenspezifischer T-Zellen essentiell. Um die Effizienz dieses Prozesses zu steigern, wurde ein bifunktionelles IL2-mCD40L Fusionskonstrukt hergestellt und sein Einfluss auf die Effektorfunktion von DCs in vitro und in vivo untersucht. Es wurde gezeigt, dass ein RNA kodiertes IL2-mCD40L Fusionsprotein als genetisches Adjuvanz zu einer Effizienzsteigerung des Priming zytotoxischer T-Zellen führt. Somit wurden in dieser Arbeit durch die Optimierung der Pharmakokinetik, die Modifikation der Antigenform und die Herstellung und Evaluierung von Zytokinfusionskonstrukten als genetische Adjuvantien, RNA-basierte Impfstoffe für eine optimierte Induktion von antigenspezifischen Immunantworten weiter verbessert.