920 resultados para Cobalt Ferrite
Cobalt loss from Co-ZrO2 catalyst for fischer-tropsch synthesis in continuously stirred tank reactor
Resumo:
Submitted by CAS-IR
Resumo:
Magnetic nanoparticles of nickel ferrite (NiFe2O4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles (d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at similar to 11 nm and then decreases for larger particles. Typical blocking effects were observed below similar to 225 K for all the prepared samples. The superparamagnetic blocking temperature (T-B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
Cobalt nanowires with controlled diameters have been synthesized using electrochemical deposition in etched ion-track polycarbonate membranes. Structural characterization of these nanowires with diameter 70, 90, 120 nm and length 30 mu m was performed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. The as-prepared wires show uniform diameter along the whole length and X-ray diffraction analysis reveals that [002] texture of these wires become more pronounced as diameter is reduced. Magnetic characterization of the nanowires shows a clear difference of squareness and coercivity between parallel and perpendicular orientations of the wires with respect to the applied field direction. In case of parallel applied field, the coercivity has been found to be decreasing with increasing diameter of the wires while in perpendicular case; the coercivity observes lower values for larger diameter. The results are explained by taking into account the magnetocrystalline and shape anisotropies with respect to the applied field and domain transformation mechanism when single domain limit is surpassed.
Resumo:
An attractive Fischer-Tropsch catalyst was prepared using an activated carbon as carrier to support cobalt based catalysts. Zr promoted Co/AC catalysts remarkably enhanced the activity and the selectivity toward diesel distillates and lower the methane selectivity. This modification may be attributed to specific behavior of activated carbon with high surface area and the weak interaction between metallic cobalt active sites and activated carbon. It was emphasized that the pore size of activated carbon played a very important role in restricting the growth of carbon chain to wax.
Resumo:
A series of cobalt-free and low cost perovskite oxygen permeable membranes based on BaCexFe1-xO3-delta (BCF) oxides was successfully synthesized and the membrane showed both high oxygen permeability and high stability under reductive atmosphere, which will be most suitable for constructing a membrane reactor for selective oxidation of light hydrocarbons to syngas or high value corresponding oxygenates.