975 resultados para Co-ordination


Relevância:

60.00% 60.00%

Publicador:

Resumo:

So far, social psychology in sport has preliminary focused on team cohesion, and many studies and meta analyses tried to demonstrate a relation between cohesiveness of a team and it's performance. How a team really co-operates and how the individual actions are integrated towards a team action is a question that has received relatively little attention in research. This may, at least in part, be due to a lack of a theoretical framework for collective actions, a dearth that has only recently begun to challenge sport psychologists. In this presentation a framework for a comprehensive theory of teams in sport is outlined and its potential to integrate the following presentations is put up for discussion. Based on a model developed by von Cranach, Ochsenbein and Valach (1986), teams are information processing organisms, and team actions need to be investigated on two levels: the individual team member and the group as an entity. Elements to be considered are the task, the social structure, the information processing structure and the execution structure. Obviously, different task require different social structures, communication and co-ordination. From a cognitivist point of view, internal representations (or mental models) guide the behaviour mainly in situations requiring quick reactions and adaptations, were deliberate or contingency planning are difficult. In sport teams, the collective representation contains the elements of the team situation, that is team task and team members, and of the team processes, that is communication and co-operation. Different meta-perspectives may be distinguished and bear a potential to explain the actions of efficient teams. Cranach, M. von, Ochsenbein, G., & Valach, L. (1986).The group as a self-active system: Outline of a theory of group action. European Journal of Social Psychology, 16, 193-229.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Task-oriented repetitive movements can improve muscle strength and movement co-ordination in patients with impairments due to neurological lesions. The application of robotics and automation technology can serve to assist, enhance, evaluate and document the rehabilitation of movements. The paper provides an overview of existing devices that can support movement therapy of the upper extremities in subjects with neurological pathologies. The devices are critically compared with respect to technical function, clinical applicability, and, if they exist, clinical outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction So far, social psychology in sport has preliminary focused on team cohesion, and many studies and meta-analyses tried to demonstrate a relation between cohesiveness of a team and its performance. How a team really co-operates and how the individual actions are integrated towards a team action is a question that has received relatively little attention in research. This may, at least in part, be due to a lack of a theoretical framework for collective actions, a dearth that has only recently begun to challenge sport psychologists. Objectives In this presentation a framework for a comprehensive theory of teams in sport is outlined and its potential to integrate research in the domain of team performance and, more specifically, the following presentations, is put up for discussion. Method Based on a model developed by von Cranach, Ochsenbein and Valach (1986), teams are considered to be information processing organisms, and team actions need to be investigated on two levels: the individual team member and the group as an entity. Elements to be considered are the task, the social structure, the information processing structure and the execution structure. Obviously, different task require different social structures, communication processes and co-ordination of individual movements. Especially in rapid interactive sports planning and execution of movements based on feedback loops are not possible. Deliberate planning may be a solution mainly for offensive actions, whereas defensive actions have to adjust to the opponent team's actions. Consequently, mental representations must be developed to allow a feed-forward regulation of team member's actions. Results and Conclusions Some preliminary findings based on this conceptual framework as well as further consequences for empirical investigations will be presented. References Cranach, M.v., Ochsenbein, G. & Valach, L. (1986). The group as a self-active system: Outline of a theory of group action. European Journal of Social Psychology, 16, 193-229.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracellular signaling pathways initiated by secreted proteins are important in the co-ordination of tissue interactions in multi-cellular organisms, particularly during embryonic development. These signaling cascades direct diverse cellular events, including proliferation, differentiation and migration, in both autocrine and paracrine modes. In adult animals, abnormal function of these proteins often results in degenerative and tumourigenic syndromes. In this study, I have focused on elucidating the role of Bone Morphogenetic Protein (Bmp) signal transduction during neuronal specification and differentiation in the vertebrate embryo, using the mouse retina as a model. Using tissue-specific conditional knock-out approaches, the consequences of genetic loss-of-function of this signaling pathway on retinal physiology were examined. Mutant mice lacking Bmp type I receptor function displayed a range of retinal phenotypes, each of which appeared to be regulated at a different threshold of Bmp receptor activity. Novel essential functions for Bmp signaling were uncovered for retinal neurogenesis, cell survival, and axonal pathfinding at the optic disc. Further, BmprIa and BmprIa exhibited genetic interactions suggestive of functional redundancy. To further characterize the underlying molecular bases for the pleiotropic effects of Bmp receptors, retina-specific loss-of-function mutants of the obligate Bmp-activated transcriptional mediator Smad4 were generated. A comparison of the retina-specific Smad4 mutant phenotypes with those of the Bmp receptor mutant retina revealed that only a subset of retinal phenotypes, namely optic disc axon pathfinding and axial patterning were common for both classes of mutant animals. Thus, these results suggest that, contrary to the classic scheme of Bmp signal transduction, Smad4-independent pathways may be operative downstream of the type I receptors. Indeed, such alternative intracellular signaling cascades may constitute a molecular basis for the multiple cellular responses elicited by Bmp signaling. Finally, I tested whether the potential Bmp pathway targets, the extracellular ligands Fgf9 and Fgf15, mediate essential cellular processes in the retina. The analyses of Fgf9 −/−; Fgf15−/− mutant mice posit a novel shared role for these genes in intra-retinal axon pathfinding. Collectively, these studies have elucidated part of the molecular machinery directing mammalian neuro-retinal development, and provided useful in vivo models to study visual function. ^