961 resultados para Clinical-prediction Rules
Resumo:
Objective: We used demographic and clinical data to design practical classification models for prediction of neurocognitive impairment (NCI) in people with HIV infection. Methods: The study population comprised 331 HIV-infected patients with available demographic, clinical, and neurocognitive data collected using a comprehensive battery of neuropsychological tests. Classification and regression trees (CART) were developed to btain detailed and reliable models to predict NCI. Following a practical clinical approach, NCI was considered the main variable for study outcomes, and analyses were performed separately in treatment-naïve and treatment-experienced patients. Results: The study sample comprised 52 treatment-naïve and 279 experienced patients. In the first group, the variables identified as better predictors of NCI were CD4 cell count and age (correct classification [CC]: 79.6%, 3 final nodes). In treatment-experienced patients, the variables most closely related to NCI were years of education, nadir CD4 cell count, central nervous system penetration-effectiveness score, age, employment status, and confounding comorbidities (CC: 82.1%, 7 final nodes). In patients with an undetectable viral load and no comorbidities, we obtained a fairly accurate model in which the main variables were nadir CD4 cell count, current CD4 cell count, time on current treatment, and past highest viral load (CC: 88%, 6 final nodes). Conclusion: Practical classification models to predict NCI in HIV infection can be obtained using demographic and clinical variables. An approach based on CART analyses may facilitate screening for HIV-associated neurocognitive disorders and complement clinical information about risk and protective factors for NCI in HIV-infected patients.
Resumo:
Objective To evaluate the association of Doppler of uterine artery and flow-mediated dilation of brachial artery (FMD) in the assessment of placental perfusion and endothelial function to predict preeclampsia. Materials and Methods A total of 91 patients considered as at risk for developing preeclampsia were recruited at the prenatal unit of the authors' institution. All the patients underwent FMD and Doppler of uterine arteries between their 24th and 28th gestational weeks. Calculations of sensitivity and specificity for both isolated and associated methods were performed. Results Nineteen out of the 91 patients developed preeclampsia, while the rest remained normotensive. Doppler flowmetry of uterine arteries with presence of bilateral protodiastolic notch had sensitivity of 63.1% and specificity of 87.5% for the prediction of preeclampsia. Considering a cutoff value of 6.5%, FMD showed sensitivity of 84.2% and specificity of 73.6%. In a parallel analysis, as the two methods were associated, sensitivity was 94.2% and specificity, 64.4%. Conclusion The association of Doppler study of uterine arteries and FMD has proved to be an interesting clinical strategy for the prediction of preeclampsia, which may represent a positive impact on prenatal care of patients considered as at high-risk for developing such a condition.
Resumo:
Trabecular bone score (TBS) is a gray-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual-level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow-up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65-1.87 versus 1.70, 95% CI 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. © 2015 American Society for Bone and Mineral Research.
Resumo:
Atherosclerosis is a vascular inflammatory disease causing coronary artery disease, myocardial infarct and stroke, the leading causes of death in Finland and in many other countries. The development of atherosclerotic plaques starts already in childhood and is an ongoing process throughout life. Rupture of a plaque and the following occlusion of the vessel is the main reason for myocardial infarct and stroke, but despite extensive research, the prediction of rupture remains a major clinical problem. Inflammation is considered a key factor in the vulnerability of plaques to rupture. Measuring the inflammation in plaques non-invasively is one potential approach for identification of vulnerable plaques. The aim of this study was to evaluate tracers for positron emission tomography (PET) imaging of vascular inflammation. The studies were performed with a mouse model of atherosclerosis by using ex vivo biodistribution, autoradiography and in vivo PET and computed tomography (CT). Several tracers for inflammation activity were tested and compared with the morphology of the plaques. Inflammation in the atherosclerotic plaques was evaluated as expression of active macrophages. Systematic analysis revealed that the uptake of 18F-FDG and 11C-choline, tracers for metabolic activity in inflammatory cells, was more prominent in the atherosclerotic plaques than in the surrounding healthy vessel wall. The tracer for αvβ3 integrin, 18Fgalacto- RGD, was also found to have high potential for imaging inflammation in the plaques. While 11C-PK11195, a tracer targeted to receptors in active macrophages, was shown to accumulate in active plaques, the target-to-background ratio was not found to be ideal for in vivo imaging purposes. In conclusion, tracers for the imaging of inflammation in atherosclerotic plaques can be tested in experimental pre-clinical settings to select potential imaging agents for further clinical testing. 18F-FDG, 18F-galacto-RGD and 11C-choline choline have good properties, and further studies to clarify their applicability for atherosclerosis imaging in humans are warranted.
Resumo:
PURPOSE: To estimate the likelihood of axillary lymph node involvement for patients with early-stage breast cancer, based on a variety of clinical and pathological factors. METHODS: A retrospective analysis was done in hospital databases from 1999 to 2007. Two hundred thirty-nine patients were diagnosed with early-stage breast cancer. Predictive factors, such as patient age, tumor size, lymphovascular invasion, histological grade and immunohistochemical subtype were analyzed to identify variables that may be associated with axillary lymph node metastasis. RESULTS: Patients with tumors that are negative for estrogen receptor, progesterone receptor, and HER2 had approximately a 90% lower chance of developing lymph node metastasis than those with luminal A tumors (e.g., ER+ and/or PR+ and HER2-) - Odds Ratio: 0.11; 95% confidence interval: 0.01-0.88; p=0.01. Furthermore, the risk for lymph node metastasis of luminal A tumors seemed to decrease as patient age increased, and it was directly correlated with tumor size. CONCLUSION: The molecular classification of early-stage breast cancer using immunohistochemistry may help predicting the probability of developing axillary lymph node metastasis. Further studies are needed to optimize predictions for nodal involvement, with the aim of aiding the decision-making process for breast cancer treatment.
Resumo:
Early identification of patients who need hospitalization or patients who should be discharged would be helpful for the management of acute asthma in the emergency room. The objective of the present study was to examine the clinical and pulmonary functional measures used during the first hour of assessment of acute asthma in the emergency room in order to predict the outcome. We evaluated 88 patients. The inclusion criteria were age between 12 and 55 years, forced expiratory volume in the first second below 50% of predicted value, and no history of chronic disease or pregnancy. After baseline evaluation, all patients were treated with 2.5 mg albuterol delivered by nebulization every 20 min in the first hour and 60 mg of intravenous methylprednisolone. Patients were reevaluated after 60 min of treatment. Sixty-five patients (73.9%) were successfully treated and discharged from the emergency room (good responders), and 23 (26.1%) were hospitalized or were treated and discharged with relapse within 10 days (poor responders). A predictive index was developed: peak expiratory flow rates after 1 h <=0% of predicted values and accessory muscle use after 1 h. The index ranged from 0 to 2. An index of 1 or higher presented a sensitivity of 74.0, a specificity of 69.0, a positive predictive value of 46.0, and a negative predictive value of 88.0. It was possible to predict outcome in the first hour of management of acute asthma in the emergency room when the index score was 0 or 2.
Resumo:
In view of the importance of anticipating the occurrence of critical situations in medicine, we propose the use of a fuzzy expert system to predict the need for advanced neonatal resuscitation efforts in the delivery room. This system relates the maternal medical, obstetric and neonatal characteristics to the clinical conditions of the newborn, providing a risk measurement of need of advanced neonatal resuscitation measures. It is structured as a fuzzy composition developed on the basis of the subjective perception of danger of nine neonatologists facing 61 antenatal and intrapartum clinical situations which provide a degree of association with the risk of occurrence of perinatal asphyxia. The resulting relational matrix describes the association between clinical factors and risk of perinatal asphyxia. Analyzing the inputs of the presence or absence of all 61 clinical factors, the system returns the rate of risk of perinatal asphyxia as output. A prospectively collected series of 304 cases of perinatal care was analyzed to ascertain system performance. The fuzzy expert system presented a sensitivity of 76.5% and specificity of 94.8% in the identification of the need for advanced neonatal resuscitation measures, considering a cut-off value of 5 on a scale ranging from 0 to 10. The area under the receiver operating characteristic curve was 0.93. The identification of risk situations plays an important role in the planning of health care. These preliminary results encourage us to develop further studies and to refine this model, which is intended to implement an auxiliary system able to help health care staff to make decisions in perinatal care.
Resumo:
This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.
Resumo:
Very preterm birth is a risk for brain injury and abnormal neurodevelopment. While the incidence of cerebral palsy has decreased due to advances in perinatal and neonatal care, the rate of less severe neuromotor problems continues to be high in very prematurely born children. Neonatal brain imaging can aid in identifying children for closer follow-up and in providing parents information on developmental risks. This thesis aimed to study the predictive value of structural brain magnetic resonance imaging (MRI) at term age, serial neonatal cranial ultrasound (cUS), and structured neurological examinations during the longitudinal follow-up for the neurodevelopment of very preterm born children up to 11 years of age as a part of the PIPARI Study (The Development and Functioning of Very Low Birth Weight Infants from Infancy to School Age). A further aim was to describe the associations between regional brain volumes and long-term neuromotor profile. The prospective follow-up comprised of the assessment of neurosensory development at 2 years of corrected age, cognitive development at 5 years of chronological age, and neuromotor development at 11 years of age. Neonatal brain imaging and structured neurological examinations predicted neurodevelopment at all age-points. The combination of neurological examination and brain MRI or cUS improved the predictive value of neonatal brain imaging alone. Decreased brain volumes associated with neuromotor performance. At the age of 11 years, the majority of the very preterm born children had age-appropriate neuromotor development and after-school sporting activities. Long-term clinical follow-up is recommended at least for all very preterm infants with major brain pathologies.
Resumo:
A substantial research literature exists regarding the psychopathy construct in forensic populations, but more recently, the construct has been extended to non-clinical populations. The purpose of the present dissertation was to investigate the content and the correlates of the psychopathy construct, with a particular focus on addressing gaps and controversies in the literature. In Study 1, the role of low anxiety in psychopathy was investigated, as some authors have proposed that low anxiety is integral to the psychopathy construct. Participants (n = 346) responded to two self-report psychopathy scales, the SRP-III and the PPI-R, as well as measures of temperament, personality, and antisociality. Of particular interest was the PPI-R Stress Immunity sub scale, which represents low anxiety content. I t was found that Stress Immunity was not correlated with SRP-III psychopathy, nor did it share common personality or temperament correlates or contribute to the prediction of anti sociality. From Study 1, it was concluded that it was unlikely that low anxiety is a central feature of the psychopathy construct. In Study 2, the relationship between SRP-III psychopathy and Ability Emotional Intelligence (Le., Emotional Intelligence measured as an ability, rather than as a self-report personality trait-like characteristic) was investigated, to determine whether psychopathy is be s t seen as a syndrome characterized by emotional deficits or by the ability to skillfully manipulate and prey upon the others' emotions. A negative correlation between the two constructs was found, suggesting that psychopathy is best characterized by deficits in perceiving, facilitating, managing, and understanding emotions. In Study 3, sex differences in the sexual behavior (i.e., promiscuity, age of first sexual behaviors, extradyadic sexual relations) and appearance-related esteem (i.e., body shame,appearance anxiety, self-esteem) correlates of SRP-III psychopathy were investigated. The sexual behavior correlates of psychopathy were quite similar for men and women, but the esteem correlates were very different, such that high psychopathy in men was related to high esteem, whereas high psychopathy in women was generally related to low esteem. This sex difference was difficult to interpret in that it was not mediated by sexual behavior, suggesting that further exploration of this topic is warranted. Together, these three studies contribute to our understanding of non-clinical psychopathy, indicating that low anxiety is likely not part of the construct, that psychopathy is related to low levels of ability in Emotional Intelligence, and that psychopathy is an important predictor of behavior, ability, and beliefs and feelings about the self
Resumo:
Feature selection plays an important role in knowledge discovery and data mining nowadays. In traditional rough set theory, feature selection using reduct - the minimal discerning set of attributes - is an important area. Nevertheless, the original definition of a reduct is restrictive, so in one of the previous research it was proposed to take into account not only the horizontal reduction of information by feature selection, but also a vertical reduction considering suitable subsets of the original set of objects. Following the work mentioned above, a new approach to generate bireducts using a multi--objective genetic algorithm was proposed. Although the genetic algorithms were used to calculate reduct in some previous works, we did not find any work where genetic algorithms were adopted to calculate bireducts. Compared to the works done before in this area, the proposed method has less randomness in generating bireducts. The genetic algorithm system estimated a quality of each bireduct by values of two objective functions as evolution progresses, so consequently a set of bireducts with optimized values of these objectives was obtained. Different fitness evaluation methods and genetic operators, such as crossover and mutation, were applied and the prediction accuracies were compared. Five datasets were used to test the proposed method and two datasets were used to perform a comparison study. Statistical analysis using the one-way ANOVA test was performed to determine the significant difference between the results. The experiment showed that the proposed method was able to reduce the number of bireducts necessary in order to receive a good prediction accuracy. Also, the influence of different genetic operators and fitness evaluation strategies on the prediction accuracy was analyzed. It was shown that the prediction accuracies of the proposed method are comparable with the best results in machine learning literature, and some of them outperformed it.
Resumo:
La fibrillation auriculaire (FA) est une arythmie touchant les oreillettes. En FA, la contraction auriculaire est rapide et irrégulière. Le remplissage des ventricules devient incomplet, ce qui réduit le débit cardiaque. La FA peut entraîner des palpitations, des évanouissements, des douleurs thoraciques ou l’insuffisance cardiaque. Elle augmente aussi le risque d'accident vasculaire. Le pontage coronarien est une intervention chirurgicale réalisée pour restaurer le flux sanguin dans les cas de maladie coronarienne sévère. 10% à 65% des patients qui n'ont jamais subi de FA, en sont victime le plus souvent lors du deuxième ou troisième jour postopératoire. La FA est particulièrement fréquente après une chirurgie de la valve mitrale, survenant alors dans environ 64% des patients. L'apparition de la FA postopératoire est associée à une augmentation de la morbidité, de la durée et des coûts d'hospitalisation. Les mécanismes responsables de la FA postopératoire ne sont pas bien compris. L'identification des patients à haut risque de FA après un pontage coronarien serait utile pour sa prévention. Le présent projet est basé sur l'analyse d’électrogrammes cardiaques enregistrées chez les patients après pontage un aorte-coronaire. Le premier objectif de la recherche est d'étudier si les enregistrements affichent des changements typiques avant l'apparition de la FA. Le deuxième objectif est d'identifier des facteurs prédictifs permettant d’identifier les patients qui vont développer une FA. Les enregistrements ont été réalisés par l'équipe du Dr Pierre Pagé sur 137 patients traités par pontage coronarien. Trois électrodes unipolaires ont été suturées sur l'épicarde des oreillettes pour enregistrer en continu pendant les 4 premiers jours postopératoires. La première tâche était de développer un algorithme pour détecter et distinguer les activations auriculaires et ventriculaires sur chaque canal, et pour combiner les activations des trois canaux appartenant à un même événement cardiaque. L'algorithme a été développé et optimisé sur un premier ensemble de marqueurs, et sa performance évaluée sur un second ensemble. Un logiciel de validation a été développé pour préparer ces deux ensembles et pour corriger les détections sur tous les enregistrements qui ont été utilisés plus tard dans les analyses. Il a été complété par des outils pour former, étiqueter et valider les battements sinusaux normaux, les activations auriculaires et ventriculaires prématurées (PAA, PVA), ainsi que les épisodes d'arythmie. Les données cliniques préopératoires ont ensuite été analysées pour établir le risque préopératoire de FA. L’âge, le niveau de créatinine sérique et un diagnostic d'infarctus du myocarde se sont révélés être les plus importants facteurs de prédiction. Bien que le niveau du risque préopératoire puisse dans une certaine mesure prédire qui développera la FA, il n'était pas corrélé avec le temps de l'apparition de la FA postopératoire. Pour l'ensemble des patients ayant eu au moins un épisode de FA d’une durée de 10 minutes ou plus, les deux heures précédant la première FA prolongée ont été analysées. Cette première FA prolongée était toujours déclenchée par un PAA dont l’origine était le plus souvent sur l'oreillette gauche. Cependant, au cours des deux heures pré-FA, la distribution des PAA et de la fraction de ceux-ci provenant de l'oreillette gauche était large et inhomogène parmi les patients. Le nombre de PAA, la durée des arythmies transitoires, le rythme cardiaque sinusal, la portion basse fréquence de la variabilité du rythme cardiaque (LF portion) montraient des changements significatifs dans la dernière heure avant le début de la FA. La dernière étape consistait à comparer les patients avec et sans FA prolongée pour trouver des facteurs permettant de discriminer les deux groupes. Cinq types de modèles de régression logistique ont été comparés. Ils avaient une sensibilité, une spécificité et une courbe opérateur-receveur similaires, et tous avaient un niveau de prédiction des patients sans FA très faible. Une méthode de moyenne glissante a été proposée pour améliorer la discrimination, surtout pour les patients sans FA. Deux modèles ont été retenus, sélectionnés sur les critères de robustesse, de précision, et d’applicabilité. Autour 70% patients sans FA et 75% de patients avec FA ont été correctement identifiés dans la dernière heure avant la FA. Le taux de PAA, la fraction des PAA initiés dans l'oreillette gauche, le pNN50, le temps de conduction auriculo-ventriculaire, et la corrélation entre ce dernier et le rythme cardiaque étaient les variables de prédiction communes à ces deux modèles.
Resumo:
Deux tiers des cancers du sein expriment des récepteurs hormonaux ostrogéniques (tumeur ER-positive) et la croissance de ces tumeurs est stimulée par l’estrogène. Des traitements adjuvant avec des anti-estrogènes, tel que le Tamoxifen et les Inhibiteurs de l’Aromatase peuvent améliorer la survie des patientes atteinte de cancer du sein. Toutefois la thérapie hormonale n’est pas efficace dans toutes les tumeurs mammaires ER-positives. Les tumeurs peuvent présenter avec une résistance intrinsèque ou acquise au Tamoxifen. Présentement, c’est impossible de prédire quelle patiente va bénéficier ou non du Tamoxifen. Des études préliminaires du laboratoire de Dr. Mader, ont identifié le niveau d’expression de 20 gènes, qui peuvent prédire la réponse thérapeutique au Tamoxifen (survie sans récidive). Ces marqueurs, identifié en utilisant une analyse bioinformatique de bases de données publiques de profils d’expression des gènes, sont capables de discriminer quelles patientes vont mieux répondre au Tamoxifen. Le but principal de cette étude est de développer un outil de PCR qui peut évaluer le niveau d’expression de ces 20 gènes prédictif et de tester cette signature de 20 gènes dans une étude rétrospective, en utilisant des tumeurs de cancer du sein en bloc de paraffine, de patients avec une histoire médicale connue. Cet outil aurait donc un impact direct dans la pratique clinique. Des traitements futiles pourraient être éviter et l’indentification de tumeurs ER+ avec peu de chance de répondre à un traitement anti-estrogène amélioré. En conséquence, de la recherche plus appropriée pour les tumeurs résistantes au Tamoxifen, pourront se faire.
Resumo:
Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.
Resumo:
The aim of this study is to show the importance of two classification techniques, viz. decision tree and clustering, in prediction of learning disabilities (LD) of school-age children. LDs affect about 10 percent of all children enrolled in schools. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Decision trees and clustering are powerful and popular tools used for classification and prediction in Data mining. Different rules extracted from the decision tree are used for prediction of learning disabilities. Clustering is the assignment of a set of observations into subsets, called clusters, which are useful in finding the different signs and symptoms (attributes) present in the LD affected child. In this paper, J48 algorithm is used for constructing the decision tree and K-means algorithm is used for creating the clusters. By applying these classification techniques, LD in any child can be identified