957 resultados para Climatic shifts and water balance,
Resumo:
This study was carried out to determine some physiological and phenological responses of the bean under high [CO2] and drought stress. The experiment was conducted from April to July 2009 in Viçosa, Brazil. The open-top chambers were used to enrich the air with CO2, whereas the drought stress was applied between the flowering and the ripening. The randomized block design was used, with four replicates in the subplots. The following plots were [CO2] at 700ppm (F1) and [CO2] environmental (F2) and the subplots were well watering (S1) and drought stress (S2). The results were subjected to Anova and the Tukey test (P < 0.05). For the treatments F1S1 and F1S2 the photosynthetic rate showed increments of 59% and the transpiration reduction of 12%. The yield, leaf temperature and stomatal conductance were not significant different to high [CO2], different from the dry matter, who showed increment of 20% (F1S1) and the water use efficiency who showed increase of 90% for high [CO2]. The osmotic potential was lower in plants under drought stress (F2S2 and F1S2), followed by plants under high [CO2] (F1S1). Despite the increment in photosynthesis, high [CO2] does not guarantee higher yield.
Resumo:
Straw on sowing line modifies seed germination environment regarding temperature and water content. Given these considerations, the aim of this study was to evaluate different mechanisms for coverage mobilization on the sowing line and their effect on germination environment of maize seeds, mainly in relation to the dynamics of straw in the seedbed, water content and soil temperature. Treatments consisted on the combination of two mechanisms at front of furrow opener, composed of cutting disc and row cleaners, with three mechanisms behind the seed furrower for returning the soil, consisting of three covering mechanisms, commercial and prototype models. It was found that straw presence on the surface of sowing line contributed to germination of maize seeds, maintenance of temperature and soil water content. The cutting disc treatment, associated with prototype, introduced percentages of water content near the ones in bottom layer, and this soil water content was 29.7% with 93.75% of straw coverage and deeper seeding depth, granting better conditions for seed germination. However, the straw coverage removal on soil by the row cleaners and its low sowing depth caused water loss in the lines resulting in great reduction of the emergence speed index in maize seedlings.
Resumo:
Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume
Resumo:
We have demonstrated that central administration of zinc in minute amounts induces a significant antidipsogenic action in dehydrated rats as well as in rats under central cholinergic and angiotensinergic stimulation. Here we show that acute third ventricle injections of zinc also block water intake induced by central ß-adrenergic stimulation in Wistar rats (190-250 g). Central inhibition of opioid pathways by naloxone reverses the zinc-induced antidipsogenic effect in dehydrated rats. After 120 min, rats receiving third ventricle injections of isoproterenol (160 nmol/rat) exhibited a significant increase in water intake (5.78 ± 0.54 ml/100 g body weight) compared to saline-treated controls (0.15 ± 0.07 ml/100 g body weight). Pretreatment with zinc (3.0, 30.0 and 300.0 pmol/rat, 45 min before isoproterenol injection) blocked water intake in a dose-dependent way. At the highest dose employed a complete blockade was demonstrable (0.54 ± 0.2 ml/100 g body weight). After 120 min, control (NaAc-treated) dehydrated rats, as expected, exhibited a high water intake (7.36 ± 0.39 ml/100 g body weight). Central administration of zinc blocked this response (2.5 ± 0.77 ml/100 g body weight). Naloxone pretreatment (82.5 nmol/rat, 30 min before zinc administration) reverted the water intake to the high levels observed in zinc-free dehydrated animals (7.04 ± 0.56 ml/100 g body weight). These data indicate that zinc is able to block water intake induced by central ß-adrenergic stimulation and that zinc-induced blockade of water intake in dehydrated rats may be, at least in part, due to stimulation of central opioid peptides.
Resumo:
The two-kidney, one-clip renovascular (2K1C) hypertension model is characterized by a reduction in renal flow on the clipped artery that activates the renin-angiotensin system. Endothelium dysfunction, including diminished nitric oxide production, is also believed to play a role in the pathophysiology of this model. Some studies have shown an effect of L-arginine (L-Arg, a nitric oxide precursor) on hypertension. In the present study we determined the ability of L-Arg (7 days of treatment) to reduce blood pressure and alter renal excretions of water, Na+ and K+ in a model of 2K1C-induced hypertension. Under ether anesthesia, male Wistar rats (150-170 g) had a silver clip (0.20 mm) placed around the left renal artery to produce the 2K1C renovascular hypertension model. In the experimental group, the drinking water was replaced with an L-Arg solution (10 mg/ml; average intake of 300 mg/day) from the 7th to the 14th day after surgery. Sham-operated rats were used as controls. At the end of the treatment period, mean blood pressure was measured in conscious animals. The animals were then killed and the kidneys were removed and weighed. There was a significant reduction of mean blood pressure in the L-Arg-treated group when compared to control (129 ± 7 vs 168 ± 6 mmHg, N = 8-10 per group; P<0.05). Concomitantly, a significant enhancement of water and Na+ excretion was observed in the 2K1C L-Arg-treated group when compared to control (water: 13.0 ± 0.7 vs 9.2 ± 0.5 ml/day, P<0.01; Na+: 1.1 ± 0.05 vs 0.8 ± 0.05 mEq/day, respectively, P<0.01). These results show that orally administered L-Arg acts on the kidney, possibly inducing changes in renal hemodynamics or tubular transport due to an increase in nitric oxide formation.
Resumo:
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.
Resumo:
Serine-proteases are involved in vital processes in virtually all species. They are important targets for researchers studying the relationships between protein structure and activity, for the rational design of new pharmaceuticals. Trypsin was used as a model to assess a possible differential contribution of hydration water to the binding of two synthetic inhibitors. Thermodynamic parameters for the association of bovine ß-trypsin (homogeneous material, observed 23,294.4 ± 0.2 Da, theoretical 23,292.5 Da) with the inhibitors benzamidine and berenil at pH 8.0, 25ºC and with 25 mM CaCl2, were determined using isothermal titration calorimetry and the osmotic stress method. The association constant for berenil was about 12 times higher compared to the one for benzamidine (binding constants are K = 596,599 ± 25,057 and 49,513 ± 2,732 M-1, respectively; the number of binding sites is the same for both ligands, N = 0.99 ± 0.05). Apparently the driving force responsible for this large difference of affinity is not due to hydrophobic interactions because the variation in heat capacity (DCp), a characteristic signature of these interactions, was similar in both systems tested (-464.7 ± 23.9 and -477.1 ± 86.8 J K-1 mol-1 for berenil and benzamidine, respectively). The results also indicated that the enzyme has a net gain of about 21 water molecules regardless of the inhibitor tested. It was shown that the difference in affinity could be due to a larger number of interactions between berenil and the enzyme based on computational modeling. The data support the view that pharmaceuticals derived from benzamidine that enable hydrogen bond formation outside the catalytic binding pocket of ß-trypsin may result in more effective inhibitors.
Resumo:
Water geochemistry is a very important tool for studying the water quality in a given area. Geology and climate are the major natural factors controlling the chemistry of most natural waters. Anthropogenic impacts are the secondary sources of contamination in natural waters. This study presents the first integrative approach to the geochemistry and water quality of surface waters and Lake Qarun in the Fayoum catchment, Egypt. Moreover, geochemical modeling of Lake Qarun was firstly presented. The Nile River is the main source of water to the Fayoum watershed. To investigate the quality and geochemistry of this water, water samples from irrigation canals, drains and Lake Qarun were collected during the period 2010‒2013 from the whole Fayoum drainage basin to address the major processes and factors governing the evolution of water chemistry in the investigation area. About 34 physicochemical quality parameters, including major ions, oxygen isotopes, trace elements, nutrients and microbiological parameters were investigated in the water samples. Multivariable statistical analysis was used to interpret the interrelationship between the different studied parameters. Geochemical modeling of Lake Qarun was carried out using Hardie and Eugster’s evolutionary model and a model simulated by PHREEQC software. The crystallization sequence during evaporation of Lake Qarun brine was also studied using a Jänecke phase diagram involving the system Na‒K‒Mg‒ Cl‒SO4‒H2O. The results show that the chemistry of surface water in the Fayoum catchment evolves from Ca- Mg-HCO3 at the head waters to Ca‒Mg‒Cl‒SO4 and eventually to Na‒Cl downstream and at Lake Qarun. The main processes behind the high levels of Na, SO4 and Cl in downstream waters and in Lake Qarun are dissolution of evaporites from Fayoum soils followed by evapoconcentration. This was confirmed by binary plots between the different ions, Piper plot, Gibb’s plot and δ18O results. The modeled data proved that Lake Qarun brine evolves from drainage waters via an evaporation‒crystallization process. Through the precipitation of calcite and gypsum, the solution should reach the final composition "Na–Mg–SO4–Cl". As simulated by PHREEQC, further evaporation of lake brine can drive halite to precipitate in the final stages of evaporation. Significantly, the crystallization sequence during evaporation of the lake brine at the concentration ponds of the Egyptian Salts and Minerals Company (EMISAL) reflected the findings from both Hardie and Eugster’s evolutionary model and the PHREEQC simulated model. After crystallization of halite at the EMISAL ponds, the crystallization sequence during evaporation of the residual brine (bittern) was investigated using a Jänecke phase diagram at 35 °C. This diagram was more useful than PHREEQC for predicting the evaporation path especially in the case of this highly concentrated brine (bittern). The predicted crystallization path using a Jänecke phase diagram at 35 °C showed that halite, hexahydrite, kainite and kieserite should appear during bittern evaporation. Yet the actual crystallized mineral salts were only halite and hexahydrite. The absence of kainite was due to its metastability while the absence of kieserite was due to opposed relative humidity. The presence of a specific MgSO4.nH2O phase in ancient evaporite deposits can be used as a paleoclimatic indicator. Evaluation of surface water quality for agricultural purposes shows that some irrigation waters and all drainage waters have high salinities and therefore cannot be used for irrigation. Waters from irrigation canals used as a drinking water supply show higher concentrations of Al and suffer from high levels of total coliform (TC), fecal coliform (FC) and fecal streptococcus (FS). These waters cannot be used for drinking or agricultural purposes without treatment, because of their high health risk. Therefore it is crucial that environmental protection agencies and the media increase public awareness of this issue, especially in rural areas.
Resumo:
Obstructive apnea (OA) can exert significant effects on renal sympathetic nerve activity (RSNA) and hemodynamic parameters. The present study focuses on the modulatory actions of RSNA on OA-induced sodium and water retention. The experiments were performed in renal-denervated rats (D; N = 9), which were compared to sham (S; N = 9) rats. Mean arterial pressure (MAP) and heart rate (HR) were assessed via an intrafemoral catheter. A catheter was inserted into the bladder for urinary measurements. OA episodes were induced via occlusion of the catheter inserted into the trachea. After an equilibration period, OA was induced for 20 s every 2 min and the changes in urine, MAP, HR and RSNA were recorded. Renal denervation did not alter resting MAP (S: 113 ± 4 vs D: 115 ± 4 mmHg) or HR (S: 340 ± 12 vs D: 368 ± 11 bpm). An OA episode resulted in decreased HR and MAP in both groups, but D rats showed exacerbated hypotension and attenuated bradycardia (S: -12 ± 1 mmHg and -16 ± 2 bpm vs D: -16 ± 1 mmHg and 9 ± 2 bpm; P < 0.01). The basal urinary parameters did not change during or after OA in S rats. However, D rats showed significant increases both during and after OA. Renal sympathetic nerve activity in S rats increased (34 ± 9%) during apnea episodes. These results indicate that renal denervation induces elevations of sodium content and urine volume and alters bradycardia and hypotension patterns during total OA in unconscious rats.
Resumo:
The effects of sucrose and water contents on cassava flour processed by extrusion at varied concentrations of sucrose (0-20% w/w) and water (28-42% w/w) were studied by applying response surface methodology. The extrusion of the mixtures was performed in a twin screw extruder fitted to a torque rheometer. The specific mechanical energy (SME) dissipated inside a conical twin-screw extruder was measured. Water absorption index (WAI), water solubility index (WSI) and paste viscosity readings (cold viscosity (CV), peak viscosity (PV), breakdown (BD) and set back (SB)) during a gelatinization-retrogradation cycle measured in a Rapid Visco Analyzer were determined on non-directly extruded products. The results indicated that SME and WSI decreased as a function of water and sucrose contents. WAI and pasting properties were influenced by water content. A non antiplasticizing effect of the sucrose content was observed on pasting properties, suggesting that sucrose did not reduce the availability of water available for gelatinizing cassava flour during the extrusion process. The nature of the optimum point was characterized as a saddle point for WAI, WSI, PV and BD, whereas SME showed a maximum and CV and SB a minimum. The results indicated to be valuable for the production of non-expanded cassava flour extrudates with desirable functional properties for specific end users.
Resumo:
Mimic biological structures such as the cell wall of plant tissues may be an alternative to obtain biodegradable films with improved mechanical and water vapor barrier properties. This study aims to evaluate the mechanical properties and water vapor permeability (WVP) of films produced by using the solvent-casting technique from blended methylcellulose, glucomannan, pectin and gelatin. First, films from polysaccharides at pH 4 were produced. The film with the best mechanical performance (tensile strength = 72.63 MPa; elongation = 9.85%) was obtained from methylcellulose-glucomannan-pectin at ratio 1:4:1, respectively. Then, gelatin was added to this polysaccharide blend and the pH was adjusted to 4, 5 and 6. Results showed significant improvement in WVP when films were made at pH 5 and at polysaccharides/gelatin ratio of 90/10 and 10/90, reaching 0.094 and 0.118 g.mm/h.m².kPa as values, respectively. Films with the best mechanical properties were obtained from the blend of polysaccharides, whereas WVP was improved from the blend of polysaccharides and gelatin at pH 5.
Resumo:
Abstract Composite films of chitosan, fish gelatin and microbial transglutaminase (MTgase) were developed. Films were produced by the casting method and dried at room temperature for 30 h, conditioned for 7 days at 30 °C at a relative humidity (RH) from 11 to 90%, and characterized. Chitosan:fish gelatin films in different proportions (100:0, 75:25, 50:50) with MTgase, were subjected to tensile properties and water vapor transmission (WVT) testing. The results showed that tensile strength decreased with an increase in RH and with an increase in gelatin content. Percent of elongation also increased with increasing RH and gelatin concentration. Water vapor transmission showed an increase proportional to an increase in RH with the presence of gelatin being unfavorable for reducing WVT. Results in this work allowed studying the effect of relative humidity on tensile and water vapor properties of chitosan and fish gelatin films.