995 resultados para Classical Solutions
Resumo:
Beginning in 1974, the State of Maryland created spatial databases under the MAGI (Maryland's Automated Geographic Information) system. Since that early GIS, other state and local agencies have begun GISs covering a range of applications from critical lands inventories to cadastral mapping. In 1992, state agencies, local agencies, universities, and businesses began a series of GIS coordination activities, resulting in the formation of the Maryland Local Geographic Information Committee and the Maryland State Government Geographic Information Coordinating Committee. GIS activities and system installations can be found in 22 counties plus Baltimore City, and most state agencies. Maryland's decision makers rely on a variety of GIS reports and products to conduct business and to communicate complex issues more effectively. This paper presents the status of Maryland's GIS applications for local and state decision making.
Resumo:
Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).
Resumo:
Changes in the construction sector are creating opportunities in research to maximise the benefits of those changes and to continue the exciting developments in improved people skills, new processes and developing technologies. Many research centres around the world are investigating aspects of the current changes to drive their particular expertise forward. However, the CIB Integrated Design and Delivery Solutions (IDDS) priority research theme takes a higher-level view of the changes and then focuses down on a prioritised set of research targets. These targets have been investigated, re-focussed and validated over a period of four years through many workshops, conferences and meetings by a wide ranging group of representatives from approximately 90 industry and research organisations. The outcomes of such research, once put into practice should be significantly shortened timespans from conception of need to occupation of new or revised structures. As time is money, the owners will get their investments into productive use sooner, which means a shorter payback time. In addition, there will inevitably be a reduction in construction costs as productivity increases. The improvements in reliable delivery and improved quality currently being seen in relatively simplistic use of Building information Modelling (BIM) (compared to full IDDS) will inevitably continue its on-going trajectory of improvement. We should also consider the wider economic contribution to society that will stem from such improvements and, finally, and by no means unimportantly, the reliable modelling and delivery of sustainability at both the building and estate/ area scale will significantly improve carbon footprints and other sustainable outcomes. Whilst there are huge opportunities for early adopters, the primary risk will be the expansion of the gap between those working in this way and those who are not so advanced or who even refuse to progress . The opportunities to address the significant and widely varying wastes within the structure of the construction sector and within and across projects are huge and timely and industry is encouraged to become involved.
Resumo:
Integrated design and delivery solutions (IDDS) is a priority theme of the International Council for Research and Innovation in Building and Construction (CIB), which will be used to drive the global research agenda forward. IDDS will use collaborative work processes and enhanced skills together with integrated data, information and knowledge management to minimize structural and process inefficiencies and to enhance the value delivered during design, build, operation, and across projects. IDDS build on building information modelling (BIM), incorporating advances in the training and employment of people, together with supporting new technologies. The successful use of IDDS involves changes in each of the project phases from conceptual planning and business case formulation to all stages of the supply chain: design, construction, commissioning, operation, retrofit and decommissioning. For each of these phases, key changes in the structure and culture of the project team across the different collaborating firms create a favourable context for IDDS. Special for IDDS thinking is the idea of adding project and whole-life value in all phases, for all stakeholders...
Resumo:
A new approach of integrated design and delivery solutions (IDDS) aims to radically improve the performance of the construction industries. IDDS builds upon recent trends in the construction industries that have seen the widespread adoption of technologies such as building information modelling (BIM) and innovative processes such as integrated project delivery. However, these innovations are seen to develop in isolation, with little consideration of the overarching interactions between people, process and technology. The IDDS approach is holistic in that it recognizes that it is only through a combination of initiatives such as skill development, process re-engineering, responsive information technology, enhanced interoperability and integrating knowledge management, among others, that radical change can be achieved. To implement IDDS requires step changes in many project aspects, and this gap between current performance and that required for IDDS is highlighted. The research required to bridge the gaps is identified in four major aspects of collaborative processes, workforce skills, integrated information and knowledge management.
Resumo:
CIB is developing a priority theme, now termed Improving Construction and Use through Integrated Design & Delivery Solutions (IDDS). The IDDS working group for this theme adopted the following definition: Integrated Design and Delivery Solutions use collaborative work processes and enhanced skills, with integrated data, information, and knowledge management to minimize structural and process inefficiencies and to enhance the value delivered during design, build, and operation, and across projects. The design, construction, and commissioning sectors have been repeatedly analysed as inefficient and may or may not be quite as bad as portrayed; however, there is unquestionably significant scope for IDDS to improve the delivery of value to clients, stakeholders (including occupants), and society in general, simultaneously driving down cost and time to deliver operational constructed facilities. Although various initiatives developed from computer‐aided design and manufacturing technologies, lean construction, modularization, prefabrication and integrated project delivery are currently being adopted by some sectors and specialisations in construction; IDDS provides the vision for a more holistic future transformation. Successful use of IDDS requires improvements in work processes, technology, and people’s capabilities to span the entire construction lifecycle from conception through design, construction, commissioning, operation, refurbishment/ retrofit and recycling, and considering the building’s interaction with its environment. This vision extends beyond new buildings to encompass modifications and upgrades, particularly those aimed at improved local and area sustainability goals. IDDS will facilitate greater flexibility of design options, work packaging strategies and collaboration with suppliers and trades, which will be essential to meet evolving sustainability targets. As knowledge capture and reuse become prevalent, IDDS best practice should become the norm, rather than the exception.
Resumo:
Changes in the construction sector are creating opportunities in research to maximise the benefits of those changes and to continue the exciting developments in improved people skills, new processes and developing technologies. There are many research centres around the world investigating aspects of the current changes to drive their particular expertise forward. However, the CIB Integrated Design and Delivery Solutions (IDDS) priority research theme takes a higher-level view of the changes and then focuses down on a prioritised set of research targets. These targets have been investigated, re-focussed and validated over a period of four years through many workshops, conferences and meetings by a wide ranging group of representatives from approximately 90 industry and research organisations. This roadmap prioritises and details the research to be performed, why and by whom. In particular, some 25 CIB Working Commissions and Task Groups are explained as having potential roles in the delivery of this research theme. We are extremely privileged to have been urged on by such distinguished construction professionals in their forewords and the case for research. The outcomes of such research, once put into practice should be significantly shortened timespans from conception of need to occupation of new or revised structures. As time is money, the owners will get their investments into productive use sooner, which means a shorter payback time. In addition, there will inevitably be a reduction in construction costs as productivity increases. The improvements in reliable delivery and improved quality currently being seen in relatively simplistic use of Building information Modelling (BIM) (compared to full IDDS) will inevitably continue its on-going trajectory of improvement. We should also consider the wider economic contribution to society that will stem from such improvements and, finally, and by no means unimportantly, the reliable modelling and delivery of sustainability at both the building and estate/ area scale will significantly improve carbon footprints and other sustainable outcomes. Whilst there are huge opportunities for early adopters, the primary risk will be the expansion of the gap between those working in this way and those who are not so advanced or who even refuse to progress1. However, a similar issue arises between industry, clients, educators and trainers; the latter have particular challenges, having existed for many years in a sector that has had relatively few technological changes. However, the opportunities to address the significant and widely varying wastes within the structure of the construction sector and within and across projects are huge and timely. Whilst this Roadmap is specifically targeted at the Standing Commissions and Task Groups of the CIB, it is hoped that there are elements for research and applied research across academia and industry.
Resumo:
Environmental engineers are increasingly being required to have knowledge about sustainability in their professional careers. Accreditation mechanisms for including sustainability in degree program requirements exist and are gradually being implemented by Engineers Australia. However, true integration of sustainability material into higher and vocational education curricula is still low, particularly outside the environmental engineering degree programs. In addition to environmental engineering, it is crucial for engineering across the specialisations, to be exposed to sustainability concepts and theories. This paper will demonstrate how sustainability as a ‘critical literacy’ can be designed for teaching within mainstream engineering education, using a current Australian project as a case study. The project demonstrates that sustainability education for all engineers is not only possible, but that there is international interest in collaborating in such an educational initiative. A pilot trial of the Introductory Module was undertaken in Semester 1 2004 and Version 2 trials are now proceeding with a number of universities and organisations nationally and internationally. Further modules are currently being developed in collaboration with Engineers Australia and UNESCO. The program is a finalist in the 2005 Banksia Awards (Category 11, Environmental Leadership Education and Training).
Resumo:
Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE) governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE) using two-parameter groups. This technique reduces the number of independent variables by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the shooting method. The thermal and velocity boundary layers are studied by the means of Prandtl number and non-Newtonian power index plotted in curves.
Resumo:
Physical activity (PA) parenting research has proliferated over the past decade, with findings verifying the influential role that parents play in children's emerging PA behaviors. This knowledge, however, has not translated into effective family-based PA interventions. During a preconference workshop to the 2012 International Society for Behavioral Nutrition and Physical Activity annual meeting, a PA parenting workgroup met to: (1) Discuss challenges in PA parenting research that may limit its translation, (2) identify explanations or reasons for such challenges, and; (3) recommend strategies for future research. Challenges discussed by the workgroup included a proliferation of disconnected and inconsistently measured constructs, a limited understanding of the dimensions of PA parenting, and a narrow conceptualization of hypothesized moderators of the relationship between PA parenting and child PA. Potential reasons for such challenges emphasized by the group included a disinclination to employ theory when developing measures and examining predictors and outcomes of PA parenting as well as a lack of agreed-upon measurement standards. Suggested solutions focused on the need to link PA parenting research with general parenting research, define and adopt rigorous standards of measurement, and identify new methods to assess PA parenting. As an initial step toward implementing these recommendations, the workgroup developed a conceptual model that: (1) Integrates parenting dimensions from the general parenting literature into the conceptualization of PA parenting, (2) draws on behavioral and developmental theory, and; (3) emphasizes areas which have been neglected to date including precursors to PA parenting and effect modifiers.
Resumo:
In 2009, BJSM's first editorial argued that ‘Physical inactivity is the greatest public health problem of the 21st century’.1 The data supporting that claim have not yet been challenged. Now, 5 years after BJSM published its first dedicated ‘Physical Activity is Medicine’ theme issue (http://bjsm.bmj.com/content/43/1.toc) we are pleased to highlight 23 new contributions from six countries. This issue contains an analysis of the cost of physical inactivity from the US Centre for Diseases Control.2 We also report the cost-effectiveness of one particular physical activity intervention for adults.3
Resumo:
The hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH-sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2-6.2) than under neutral and moderately alkaline conditions (8.2-9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo-first-order kinetics. There were no significant differences (P =0.05) in the rate constants (k, day-1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the 'rate constant' on pH. The hydrolysis involving attack by neutral water was at least 100-fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O-demethylation of metsulfuron-methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural (C) 2000 Society of Chemical Industry.
Resumo:
Methyl orange (MO) is a kind of anionic dye and widely used in industry. In this study, tricalcium aluminate hydrates (Ca-Al-LDHs) are used as an adsorbent to remove methyl orange (MO) from aqueous solutions. The resulting products were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), thermal analysis (TG-DTA) and scanning electron microscope (SEM). The XRD results indicated that the MO molecules were successfully intercalated into the tricalcium aluminate hydrates, with the basal spacing of Ca-Al-LDH expanding to 2.48 nm. The MIR spectrum for CaAl-MO-LDH shows obvious bands assigned to the N@N, N@H stretching vibrations and S@O, SO_ 3 group respectively, which are considered as marks to assess MO_ ion intercalation into the interlayers of LDH. The overall morphology of CaAl-MOLDH displayed a ‘‘honey-comb’’ like structure, with the adjacent layers expanded.
Resumo:
Classical ballet requires dancers to exercise significant muscle control and strength both while stationary and when moving. Following the Royal Academy of Dance (RAD) syllabus, 8 male and 27 female dancers (aged 20.2 + 1.9 yr) in a fulltime university undergraduate dance training program were asked to stand in first position for 10 seconds and then perform 10 repeats of a demi-plié exercise to a counted rhythm. Accelerometer records from the wrist, sacrum, knee and ankle were compared with the numerical scores from a professional dance instructor. The sacrum mounted sensor detected lateral tilts of the torso in dances with lower scores (Spearman’s rank correlation coefficient r = -0.64, p < 0.005). The RMS acceleration amplitude of wrist mounted sensor was linearly correlated to the movement scores (Spearman’s rank correlation coefficient r = 0.63, p < 0.005). The application of sacrum and wrist mounted sensors for biofeedback during dance training is a realistic, low cost option.
Resumo:
This paper considers two problems that frequently arise in dynamic discrete choice problems but have not received much attention with regard to simulation methods. The first problem is how to simulate unbiased simulators of probabilities conditional on past history. The second is simulating a discrete transition probability model when the underlying dependent variable is really continuous. Both methods work well relative to reasonable alternatives in the application discussed. However, in both cases, for this application, simpler methods also provide reasonably good results.