997 resultados para Circularly polarized laser pulses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-assisted killing of gold nanoparticle targeted macrophages was investigated. Using pressure transient detection, flash photography and transmission electron microscopy (TEM) imaging, we studied the mechanism of single cell damage by vapor bubble formation around gold nanospheres induced by nanosecond laser pulses. The influence of the number of irradiating laser pulses and of particle size and concentration on the threshold for acute cell damage was determined. While the single pulse damage threshold is independent of the particle size, the threshold decreases with increasing particle size when using trains of pulses. The dependence of the cell damage threshold on the nanoparticle concentration during incubation reveals that particle accumulation and distribution inside the cell plays a key role in tissue imaging or cell damaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the formation temperature of minerals using fluid inclusions is a crucial step in understanding rock-forming scenarios. Unfortunately, fluid inclusions in minerals formed at low temperature, such as gypsum, are commonly in a metastable monophase liquid state. To overcome this problem, ultra-short laser pulses can be used to induce vapor bubble nucleation, thus creating a stable two-phase fluid inclusion appropriate for subsequent measurements of the liquid-vapor homogenization temperature, T-h. In this study we evaluate the applicability of T-h data to accurately determine gypsum formation temperatures. We used fluid inclusions in synthetic gypsum crystals grown in the laboratory at different temperatures between 40 degrees C and 80 degrees C under atmospheric pressure conditions. We found an asymmetric distribution of the T-h values, which are systematically lower than the actual crystal growth temperatures, T-g; this is due to (1) the effect of surface tension on liquid-vapor homogenization, and (2) plastic deformation of the inclusion walls due to internal tensile stress occurring in the metastable state of the inclusions. Based on this understanding, we have determined growth temperatures of natural giant gypsum crystals from Naica (Mexico), yielding 47 +/- 1.5 degrees C for crystals grown in the Cave of Swords (120 m below surface) and 54.5 +/- 2 degrees C for giant crystals grown in the Cave of Crystals (290 m below surface). These results support the earlier hypothesis that the population and the size of the Naica crystals were controlled by temperature. In addition, this experimental method opens a door to determining the growth temperature of minerals forming in low-temperature environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The High-Altitude Water Cherenkov (HAWC) Experiment is a gamma-ray observatory that utilizes water silos as Cherenkov detectors to measure the electromagnetic air showers created by gamma rays. The experiment consists of an array of closely packed water Cherenkov detectors (WCDs), each with four photomultiplier tubes (PMTs). The direction of the gamma ray will be reconstructed using the times when the electromagnetic shower front triggers PMTs in each WCD. To achieve an angular resolution as low as 0.1 degrees, a laser calibration system will be used to measure relative PMT response times. The system will direct 300ps laser pulses into two fiber-optic networks. Each network will use optical fan-outs and switches to direct light to specific WCDs. The first network is used to measure the light transit time out to each pair of detectors, and the second network sends light to each detector, calibrating the response times of the four PMTs within each detector. As the relative PMT response times are dependent on the number of photons in the light pulse, neutral density filters will be used to control the light intensity across five orders of magnitude. This system will run both continuously in a low-rate mode, and in a high-rate mode with many intensity levels. In this thesis, the design of the calibration system and systematic studies verifying its performance are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of collimated electron beams from metal double-gate nanotip arrays excited by near infrared laser pulses is studied. Using electromagnetic and particle tracking simulations, we showed that electron pulses with small rms transverse velocities are efficiently produced from nanotip arrays by laser-induced field emission with the laser wavelength tuned to surface plasmon polariton resonance of the stacked double-gate structure. The result indicates the possibility of realizing a metal nanotip array cathode that outperforms state-of-the-art photocathodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Zimmerwald SLR station is operated in a monostatic mode with 532nm laser pulses emitted at adjustable frequencies of 90-110Hz with energies slightly less than 10mJ. A rotating shutter protects the CSPAD receiver from the backscatter of the transmit beam. These systems are located below the telescope in an operator room housed within the observatory building with the laser system located in a separated, air-conditioned part of the room. All hardware components may be automatically accessed by the control software and from remote if required. Thanks to the fully automatic and remotely controllable SLR operations, the Zimmerwald station is one of the most productive stations in the ILRS network. Key characteristics of the hardware are shown. Specialities like the tracking of the full GLONASS constellation, one-way ranging to the Lunar Reconnaissance Orbiter, and photon reception from bi-static experiments with the Graz SLR station are highlighted as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial arrangement of leaves and flowers around the stem, known as phyllotaxis, is controlled by an auxin-dependent reiterative mechanism that leads to regular spacing of the organs and thereby to remarkably precise phyllotactic patterns. The mechanism is based on the active cellular transport of the phytohormone auxin by cellular influx and efflux carriers, such as AUX1 and PIN1. Their important role in phyllotaxis is evident from mutant phenotypes, but their exact roles in space and time are difficult to address due to the strong pleiotropic phenotypes of most mutants in phyllotaxis. Models of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis. Using amplified femtosecond laser pulses, we ablated the internal tissues in young leaf primordia of tomato (Solanum lycopersicum) without damaging the overlying L1 and L2 layers. Our results show that ablation of the future midvein leads to a transient accumulation of auxin in the primordia and to an increase in their width. Phyllotaxis was transiently affected after midvein ablations, but readjusted after two plastochrons. These results indicate that the developing midvein is involved in the basipetal transport of auxin through young primordia, which contributes to phyllotactic spacing and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The derivative nonlinear Schrodinger DNLS equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model equal dampings of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase, no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space behavior occurs for left-hand LH polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than about unstable wave frequency 2/4 x ion cyclotron frequency. The structural stability of the transition was explored by going into a fully 3-wave model different dampings of daughter waves,four-dimensional flow; both models differ in significant phase-space features but keep common features essential for the transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four-dimensional flow in the phase space of three amplitudes of circularly polarized Alfven waves and one relative phase, resulting from a resonant three-wave truncation of the derivative nonlinear Schrödinger equation, has been analyzed; wave 1 is linearly unstable with growth rate , and waves 2 and 3 are stable with damping 2 and 3, respectively. The dependence of gross dynamical features on the damping model as characterized by the relation between damping and wave-vector ratios, 2 /3, k2 /k3, and the polarization of the waves, is discussed; two damping models, Landau k and resistive k2, are studied in depth. Very complex dynamics, such as multiple blue sky catastrophes and chaotic attractors arising from Feigenbaum sequences, and explosive bifurcations involving Intermittency-I chaos, are shown to be associated with the existence and loss of stability of certain fixed point P of the flow. Independently of the damping model, P may only exist as against flow contraction just requiring.In the case of right-hand RH polarization, point P may exist for all models other than Landau damping; for the resistive model, P may exist for RH polarization only if 2+3/2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model (equal damping of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase), no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic dynamics that is absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralelling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. No matter how small the growth rate of the unstable wave, the four-dimensional flow for the three wave amplitudes and a relative phase, with both resistive damping and linear Landau damping, exhibits chaotic relaxation oscillations that are absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable. The parameter domain developing chaos is much broader than the corresponding domain in a reduced 3-wave model that assumes equal dampings of the daughter waves

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electro-dynamical tethers emit waves in structured denominated Alfven wings. The Derivative Nonlineal Schrödinger Equation (DNLS) possesses the capacity to describe the propagation of circularly polarized Alfven waves of finite amplitude in cold plasmas. The DNLS equation is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In this article is presented a theoretical and numerical analysis when the growth rate of the unstable wave is next to zero considering two damping models: Landau and resistive. The DNLS equation presents a chaotic dynamics when is consider only three wave truncation. The evolution to chaos possesses three routes: hard transition, period-doubling and intermittence of type I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a multichannel tomographic technique to detect fluorescent objects embedded in thick (6.4 cm) tissue-like turbid media using early-arriving photons. The experiments use picosecond laser pulses and a streak camera with single photon counting capability to provide short time resolution and high signal-to-noise ratio. The tomographic algorithm is based on the Laplace transform of an analytical diffusion approximation of the photon migration process and provides excellent agreement between the actual positions of the fluorescent objects and the experimental estimates. Submillimeter localization accuracy and 4- to 5-mm resolution are demonstrated. Moreover, objects can be accurately localized when fluorescence background is present. The results show the feasibility of using early-arriving photons to image fluorescent objects embedded in a turbid medium and its potential in clinical applications such as breast tumor detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A form of two-dimensional (2D) vibrational spectroscopy, which uses two ultrafast IR laser pulses, is used to examine the structure of a cyclic penta-peptide in solution. Spectrally resolved cross peaks occur in the off-diagonal region of the 2D IR spectrum of the amide I region, analogous to those in 2D NMR spectroscopy. These cross peaks measure the coupling between the different amide groups in the structure. Their intensities and polarizations relate directly to the three-dimensional structure of the peptide. With the help of a model coupling Hamiltonian, supplemented by density functional calculations, the spectra of this penta-peptide can be regenerated from the known solution phase structure. This 2D-IR measurement, with an intrinsic time resolution of less than 1 ps, could be used in all time regimes of interest in biology.