1000 resultados para Cinética de extração
Resumo:
The fact that alpha- and beta-chitin adopt different arrays in the solid state is explored to emphasize their different properties and distinct spectral characteristics and X ray diffraction patterns. The methods for their extraction from the biomass in view of the preservation of their native structures and aiming to fulfill the claims of purity and uniformity for potential applications are discussed. The different arrays adopted by alpha- and beta-chitin also result in distinct reactivities toward the deacetylation reaction. Thus, the deacetylation of beta-chitin is more efficient owing to the better accessibility to amide groups due to the lower crystallinity of this polymorph.
Resumo:
This work describes a recovery process of cadmium from spent nickel-cadmium batteries by a new hydrometallurgical route based on the selective extraction in hydrochloric acid medium with tributylphosphate (TBP), alone or dissolved in kerosene. The best results were obtained when TBP concentration was at least 75 vol%. Nickel extraction was negligible under these conditions. It was isolated after processing the rafinate through an anionic ion-exchange column. Final wastes generated are basically sodium chloride solutions, with no turbidity, color or heavy metals present in significant amounts.
Resumo:
The biosorption, based on the use of biomass for removal of ions is distinguished as an innovative and promising technology when compared with the traditional methods. In this context, the aim of the present work is to use Saccharomyces cerevisiae as biosorbent for the retention of Pb2+ metal ions. Factorial design was used for evaluation of the process. The observed equilibrium data were well described by Langmuir and Freundlich adsorption isotherms. The maximum adsorption capacity was 1486.88 mg/g. The results indicated that Saccharomyces cerevisiae is suitable for biosorption of Pb2+ metal ions.
Resumo:
In this study a new approach, solid phase micro extraction (SPME), is used in the evaluation of the infinite dilution activity coefficient of the solute in a given solvent. It is the purpose of the current work to demonstrate a different approach to obtain the data needed for studying the solution thermodynamics of binary liquid mixtures as well as for designing multi-component separations. The solutes investigated at the temperature 298.15 K were toluene, ethyl benzene and xylene in the solvent methanol.
Resumo:
The solubility of Mn in different fertilizers (MnSO4.H2O-p.a., MnO2-p.a.+MnO-Ind., MnO2-Ind.+MnO-Ind., MnO2-p.a., MnO2-Ind. and MnO-Ind.) was determined using different methodologies: total content and soluble contents in water, 10% H2SO4, citric acid at 20 g L-1, diluted neutral ammonium citrate, (1+9) and DTPA at 0.005 mol L-1. The Mn solubilities in the latter three extractors were assessed after agitation of the sample for one hour and after boiling for 5 minutes. The extraction procedure using neutral ammonium citrate (1+9), at 1:100, with agitation for one hour, was shown to be the most adequate to assess the availability of Mn in fertilizers.
Resumo:
The plating process generates solid waste rich in heavy metals and aiming to reduce environmental impact of such waste, this work suggests a methodology for zinc reduction, through a 2(4) factorial planning, studying the influence of the following variables: acid concentration (15, 20 or 30% v/v), acid type (sulfuric or hydrochloric), acid volume (15, 20 or 25 mL) and extraction time (12, 24 or 36 h). Through this methodology it is possible to establish the optimal conditions (15 mL of a 30% hydrochloric acid concentration during 12 h) to get a 100% efficiency in zinc extraction.
Resumo:
The reduction kinetics of a CuO/ZnO/Al2O3 catalyst by hydrogen was investigated isothermally and by temperature programmed reduction (TPR). Two reducible Cu2+ species were detected; the first one was identified as CuO bulk and the other as Cu2+ strongly interacting with alumina, possibly in the form of copper aluminate. The activation energies for the reduction of these two species were 60 and 90 kJ mol-1, respectively, and the reaction order with respect to hydrogen was one. The isothermal reduction data showed that the isotropic growth model is the most appropriate to describe the reaction rate data for both Cu2+ species.
Resumo:
The optimization of a traditional technique of cellular disruption by abrasion was carried out and a process using ultrasonic waves associated with glass pearls to extract beta-galactosidase from Kluyveromyces marxianus proposed. In the first case, the effects of the diameter and weight of the pearls in relation to the volume of cellular suspension and amount of time for cellular disruption were evaluated. The efficiency of the new process of cellular disruption was evaluated by varying the length of time of sonification and comparing with the method of abrasion under the same conditions. The proposed method can be efficiently applied to obtain beta-galactosidase at laboratory scale.
Resumo:
This work presents a study on the separation of Fe(III) and Ti(IV) from sulfuric acid leaching solutions of ilmenite (FeTiO3) using liquid-liquid extraction with D2EHPA in n-dodecane as extracting agent. The distribution coefficients (K D) of the elements related to free acidity and concentration of Fe(III) and Ti(IV) were determined. Free acidity was changed from 3x10-2 to 11.88 mol L-1 and D2EHPA concentration was fixed at 1.5 mol L-1. Recovery of final products as well as recycling of wastes generated in the process were also investigated. The LLE process as a feasible alternative to obtain high-purity TiO2.
Resumo:
This paper reports on the development of a simple and fast procedure for β-carotene extraction from carrots and its quantification by UV/Vis spectroscopy. Carotenoids extracted from carrots may also be used as alternative reagents for TLC (thin layer chromatography) detection of natural compounds with antioxidant properties, replacing the commercial p.a. grade β-carotene. Although this reagent had around 10% b-carotene, it proved to be as efficient for TLC analysis as the commercial p.a. grade β-carotene. This practice is a useful alternative for teaching undergraduate organic chemistry laboratory classes.
Resumo:
The aim of this work was to evaluate the antioxidant properties of ginger and rosemary extracts, obtained by supercritical extraction. The extracts were characterized by HPLC, GC-MS, phenolic compounds content and antioxidant activity. The main active compounds were identified and high content of phenolic compounds was observed. The extracts presented high antioxidant activity against the free radicals ABTS+ (350 and 200 mM Trolox/g, for ginger and rosemary, respectively) and DPPH+ (145 and 80 mM Trolox/g, for ginger and rosemary, respectively). These results suggested that the attained extracts are potential substitutes of synthetic antioxidants used in chemical, food and pharmaceutical industries.
Resumo:
A novel solventless sample preparation, stir-bar sorptive extraction (SBSE), for extraction, and sample enrichment of organic compounds from biological fluids, is described in this manuscript from principle to applications. The SBSE is based on sorptive extraction, whereby the compounds are extracted into a polymer coating, polydimethylsiloxane (PDMS), on a magnetic stirring rod. The extraction is controlled by the partitioning coefficient of drugs between the PDMS and sample matrix, and upon the sample-extraction medium phase ratio. The SBSE technique has been applied successfully, with high sensitivities, to biomedical analysis of volatiles and for semi-volatiles drugs from biological sample, including urine, plasma, and saliva. SBSE combined with in situ derivatization, drugs quite more polar (e.g. metabolites) also can be analyzed.
Resumo:
The aim of this work was to verify the effects of initial medium moisture content (U), addition of ammonium sulphate (N) and of potassium phosphate (P) in the production of the polygalacturonase through the solid-state fermentation, using cashew apple husk as substrate and Aspergillus niger CCT0916 as transformation agent. We also studied the best extraction conditions of the produced enzyme. The best condition of production was with U of 40%, 1% of N and 0% of P being reached an activity of the poligalacturonase of 10.1 U/g. The best extraction condition is an agitation system with a time of 100 min and a solvent-fermented medium volume ratio of 5 mL/g.
Resumo:
Photosynthetic microorganism cultures, such as microalgae, represent one of the alternatives for fossil CO2 emissions mitigation. Carbon supply is the major cost component in microalgal cultures. Aiming to enhance the dissolved inorganic carbon uptake efficiency in microalgal cultures, Spirulina sp LEB-18 was cultivated in mediums containing NaHCO3 concentrations ranging from 2.8 to 100 g L-1. Results indicated that lower dissolved inorganic carbon concentratios (2.8 g L-1 NaHCO3) produce higher growth parameters (Xmax = 0.75 g L-1; Pmax = 0.145 g L-1 d-1; µmax = 0.254 d-1) and lower carbon losses (13.61%). At 50 g L-1 of NaHCO3 cell growth was inhibited and carbon losses reached 38.73%.
Resumo:
This work describes the liquid-liquid extraction of uranium after digestion of colofanite (a fluoroapatite) from Itataia with sulfuric acid. The experiments were run at room temperature in one stage. Among the solutions tested the highest distribution coefficient (D > 60) was found for 40%vol. DEHPA (di(2-ethyl-hexyl)phosphoric acid) + 20% vol. TOPO (trioctylphosphine oxide) in kerosene. Thorium in the raffinate was quantitatively extracted by TOPO (0.1% vol.) in cyclohexane. Uranium stripping and separation from iron was possible using 1.5 mol L-1 ammonium or sodium carbonate (room temperature, one stage). However, pH control is essential for a good separation.