954 resultados para Chu-Beasley genetic algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização de Automação e Sistemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Ramo de Manutenção e Produção

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquando da definição de um layout por fluxo de produto, ou linha de produção, é necessário proceder-se à melhor selecção de combinações de tarefas a serem executadas em cada estação / posto de trabalho para que o trabalho seja executado numa sequência exequível e sejam necessárias quantidades de tempo aproximadamente iguais em cada estação / posto de trabalho. Este processo é chamado de balanceamento da linha de produção. Verifica-se que as estações de trabalho e equipamentos podem ser combinados de muitas maneiras diferentes; daí que a necessidade de efectuar o balanceamento das linhas de produção implique a distribuição de actividades sequenciais por postos de trabalho de modo a permitir uma elevada utilização de trabalho e de equipamentos e a minimizar o tempo de vazio. Os problemas de balanceamento de linhas são tipicamente problemas complexos de tratar, devido ao elevado número de combinações possíveis. Entre os métodos utilizados para resolver estes problemas encontram-se métodos de tentativa e erro, métodos heurísticos, métodos computacionais de avaliação de diferentes opções até se encontrar uma boa solução e métodos de optimização. O objectivo deste trabalho passou pelo desenvolvimento de uma ferramenta computacional para efectuar o balanceamento de linhas de produção recorrendo a algoritmos genéticos. Foi desenvolvida uma aplicação que implementa dois algoritmos genéticos, um primeiro que obtém soluções para o problema e um segundo que optimiza essas soluções, associada a uma interface gráfica em C# que permite a inserção do problema e a visualização de resultados. Obtiveram-se resultados exequíveis demonstrando vantagens em relação aos métodos heurísticos, pois é possível obter-se mais do que uma solução. Além disso, para problemas complexos torna-se mais prático o uso da aplicação desenvolvida. No entanto, esta aplicação permite no máximo seis precedências por cada operação e resultados com o máximo de nove estações de trabalho.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho, realizado no âmbito da unidade curricular de Tese/Dissertação, procura mostrar de que forma a Computação Evolucionária se pode aplicar no mundo da Música. Este é, de resto, um tema sobejamente aliciante dentro da área da Inteligência Artificial. Começa-se por apresentar o mundo da Música com uma perspetiva cronológica da sua história, dando especial relevo ao estilo musical do Fado de Coimbra. Abordam-se também os conceitos fundamentais da teoria musical. Relativamente à Computação Evolucionária, expõem-se os elementos associados aos Algoritmos Evolucionários e apresentam-se os principais modelos, nomeadamente os Algoritmos Genéticos. Ainda no âmbito da Computação Evolucionária, foi elaborado um pequeno estudo do “estado da arte” da aplicação da Computação Evolucionária na Música. A implementação prática deste trabalho baseia-se numa aplicação – AG Fado – que compõe melodias de Fado de Coimbra, utilizando Algoritmos Genéticos. O trabalho foi dividido em duas partes principais: a primeira parte consiste na recolha de informações e posterior levantamento de dados estatísticos sobre o género musical escolhido, nomeadamente fados em tonalidade maior e fados em tonalidade menor; a segunda parte consiste no desenvolvimento da aplicação, com a conceção do respetivo algoritmo genético para composição de melodias. As melodias obtidas através da aplicação desenvolvida são bastante audíveis e boas melodicamente. No entanto, destaca-se o facto de a avaliação ser efetuada por seres humanos o que implica sensibilidades musicais distintas levando a resultados igualmente distintos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica - Ramo de Energia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complexorder control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete time control systems require sample- and-hold circuits to perform the conversion from digital to analog. Fractional-Order Holds (FROHs) are an interpolation between the classical zero and first order holds and can be tuned to produce better system performance. However, the model of the FROH is somewhat hermetic and the design of the system becomes unnecessarily complicated. This paper addresses the modelling of the FROHs using the concepts of Fractional Calculus (FC). For this purpose, two simple fractional-order approximations are proposed whose parameters are estimated by a genetic algorithm. The results are simple to interpret, demonstrating that FC is a useful tool for the analysis of these devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the Genetic Algorithms (GA) as an efficient solution for the Okumura-Hata prediction model tuning on railways communications. A method for modelling the propagation model tuning parameters was presented. The algorithm tuning and validation were based on real networks measurements carried out on four different propagation scenarios and several performance indicators were used. It was shown that the proposed GA is able to produce significant improvements over the original model. The algorithm developed is currently been used on real GSM-R network planning process for an enhanced resources usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes the calculation of fractional algorithms based on time-delay systems. The study starts by analyzing the memory properties of fractional operators and their relation with time delay. Based on the Fourier analysis an approximation of fractional derivatives through timedelayed samples is developed. Furthermore, the parameters of the proposed approximation are estimated by means of genetic algorithms. The results demonstrate the feasibility of the new perspective.