962 resultados para Chromosome number variation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cytogenetic analyses of triatomines are considered to be important taxonomic tools. Thus, we analyzed the pattern of constitutive heterochromatin in 7 species of triatomine with fragmentation of the sex chromosome X, focusing on the cytotaxonomy of these triatomines. The species analyzed included Triatoma vitticeps, Triatoma melanocephala, Triatoma tibiamaculata, Triatoma protracta, Meccus pallidipennis, Panstrongylus megistus, and Panstrongylus lignarius. The seminiferous tubules of the adult males were subjected to C-banding. P. megistus and P. lignarius showed differences in chromosome number and disposition of constitutive heterochromatin, as only P. lignarius showed C-blocks in autosomes. C-banding can differentiate these species, since one of the sex chromosome (X) is heterochromatic in T. vitticeps. T. protracta showed C-blocks in both ends of all autosomes, T. tibiamaculata showed terminal C-dots in some autosomal pairs and M. pallidipennis did not show constitutive heterochromatin in autosomes. Thus, we confirmed the heterochromatic pattern of 7 species of insects and emphasized the importance of cytogenetic techniques for C-banding for taxonomy studies of the triatomines, which are important vectors of Chagas disease.
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
This study aimed to investigate the genetic variability of two Brazilian free range (Caipira) chickens lines using microsatellites analysis of ten loci. It was collected a total of 99 blood samples, which 49 were from Paraiso Pedres (PP) and 50 were from Rubro Negra (RN) lines. The amplification of the DNA fragments was performed by polymerase chain reaction (PCR) and the genotyping was conduct using ABI 3130 sequencer. The allele number variation was among 3 (LEI0254) to 32 (LEI0212) in the PP line, and 4 (LEI0254) to 31 (LEI0212) in the RN line. The allelic average per locus was 13.3 and 13.1 in the PP and RN lines, respectively. The average observed and the expected heterozygosity were 0.650 and 0.820 in the PP line, and 0.671 and 0.804 in the RN line. All of the analyzed loci were informative (PIC>0.5). These results indicate that these free-range animals have a high genetic variability, at least for the majority of the analyzed loci, and this genetic variation is higher than the commercial chickens and similar for the no-commercial birds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Karyotypes are compared of 14 species of Brazilian Columbiformes (family Columbidae): Claravis pretiosa (2n=74), Columba cayennensis (2n=76), Columba picazuro (2n=76), Columba speciosa (2n=76), Columbina minuta (2n=76), Columbina passerina (2n=76), Columbina picui (2n=76), Columbina talpacoti (2n=76), Geotrygon montana (2n=86), Leptotila rufaxilla (2n=76), Leptotila verreauxi (2n=78), Scardafella squammata (2n=78), Uropelia campestris (2n=68) and Zenaida auriculata (2n=76). The macrochromosomes of each species were analysed by conventional Giemsa staining, cytobiometrically and with G-and C-banding. All species studied are characterized by typical bird karyotypes with a few pairs of macrochromosomes and many microchromosomes. The morphology and relative length of the Z chromosome are nearly the same in all species, but the W chromosome shows variation. The G-band patterns of the first pair in Columbiformes show a large positive band distally in the long arm, common to all species of the order. The constitutive heterochromatin is restricted to the centromeres of the macro- and microchromosomes. The W is the most heterochromatic chromosome in all species studied. Studies of relative lengths, arm ratios and G- and C-banding patterns showed that in Columbiformes pairs 3, 4 and 5 are the most stable. The types of rearrangements distinguishing between species vary among the genera: pericentric inversions in Columba; fusions and translocations in Uropelia; centric fissions in Geotrygon; fusions, translocations, para and pericentric inversions in Columbina, Leptotila, Zenaida and Scardafella. On the basis of the karyological findings the phylogenetic relationships of the Brazilian Columbiformes are discussed. © 1984 Dr W. Junk Publishers.
Resumo:
Background and aims South America and Oceania possess numerous floristic similarities, often confirmed by morphological and molecular data. The carnivorous Drosera meristocaulis (Droseraceae), endemic to the Neblina highlands of northern South America, was known to share morphological characters with the pygmy sundews of Drosera sect. Bryastrum, which are endemic to Australia and New Zealand. The inclusion of D. meristocaulis in a molecular phylogenetic analysis may clarify its systematic position and offer an opportunity to investigate character evolution in Droseraceae and phylogeographic patterns between South America and Oceania. Methods Drosera meristocaulis was included in a molecular phylogenetic analysis of Droseraceae, using nuclear internal transcribed spacer (ITS) and plastid rbcL and rps16 sequence data. Pollen of D. meristocaulis was studied using light microscopy and scanning electron microscopy techniques, and the karyotype was inferred from root tip meristem. Key Results The phylogenetic inferences (maximum parsimony, maximum likelihood and Bayesian approaches) substantiate with high statistical support the inclusion of sect. Meristocaulis and its single species, D. meristocaulis, within the Australian Drosera clade, sister to a group comprising species of sect. Bryastrum. A chromosome number of 2n = approx. 32–36 supports the phylogenetic position within the Australian clade. The undivided styles, conspicuous large setuous stipules, a cryptocotylar (hypogaeous) germination pattern and pollen tetrads with aperture of intermediate type 7–8 are key morphological traits shared between D. meristocaulis and pygmy sundews of sect. Bryastrum from Australia and New Zealand. Conclusions The multidisciplinary approach adopted in this study (using morphological, palynological, cytotaxonomic and molecular phylogenetic data) enabled us to elucidate the relationships of the thus far unplaced taxon D. meristocaulis. Long-distance dispersal between southwestern Oceania and northern South America is the most likely scenario to explain the phylogeographic pattern revealed.
Resumo:
On morphological and zoogeographical grounds, discussed in the present paper, it is concluded that the narrow-skulled vole in North America, previously designated Microtus (Stenocranius) miurus Osgood, is conspecific with the Eurasian M. (Stenocranius) gregalis Pallas. Fourteen subspecies in Eurasia and 5 in North America are now recognized, but it is probable that the number in Eurasia will be reduced through future investigation. The Eurasian subspecies of this vole comprise two major groups, of which one occupies the tundra zone and the other occurs across central Asia below latitude 60° N; their geographic ranges are largely separate but evidently become confluent in northeastern Siberia. The members of the northern group of Eurasian subspecies and the North American forms are closely related; the present distribution of the latter indicates post-glacial dispersal from the Amphiberingian Refugium. It is believed that the tundra-inhabiting voles in Eurasia likewise survived the Pleistocene glaciations in northern refugia, while the members of the southern group of subspecies probably represent populations that survived south of the limits of the continental glaciers. The ranges of the two Eurasian groups probably have become confluent during post-glacial time in northeastern Siberia as a result of the southward spread of the northern forms. At least, the subspecies having the intervening range closely resembles members of the northern group. Some of the ecological and ethological characteristics of these voles are briefly discussed. The chromosome number of one of the North American subspecies of narrow-skulled vole was determined to be 54; this is the first time that the chromosomes of a member of the subgenus Stenocranius have been investigated. A karyogram has been included. German abstract: Auf morphologischen und tiergeographischen Grundlagen, die in dieser Arbeit besprochen wurden, ist festgestellt worden, daß die schmalschädlige Wiihlmaus in Nordamerika, friiher Microtus (Stenocranius) miurus Osgood bezeichnet, mit der palaearktischen Art M. (Stenocranius) gregalis Pallas identisch ist. Zur Zeit gelten 14 Unterarten in Eurasien und 5 in Nordamerika als unterscheidbar; vermutlich aber wird die Zahl der palaearktischen Unterarten durch eingehendere Untersuchungen künftig vermindert werden. Auf Grund ihrer Verbreitung bilden die palaearktischen Unterarten zwei beinahe vollständig getrennte Gruppen. Die Wühlmäuse der nördlichen Gruppe bewohnen die Tundrazone, während die Vertreter der zweiten Gruppe über Mittelasien südlicher als 60° N.B. verbreitet sind. Die Verbreitungsgebiete der zwei Gruppen verbinden sich anscheinend. Die nordamerikanischen schmalschädligen Wühlmäuse sind mit den in der Tundrazone vorkommenden palaearktischen Formen nahe verwandt; sie haben sich wahrscheinlich während der Postglazialzeit aus dem Amphiberingschen Refugium verbreitet. Möglicherweise überlebten die tundrabewohnenden Wühlmäuse Eurasiens die Eiszeit ebenfalls in vereinzelten Refugien in Nordostsibirien, während die Formen der südlichen Gruppe sie jenseits der Grenzen des Festlandsgletschers überlebten. Wahrscheinlich wurden die zwei Verbreitungsgebiete dieser Art in Eurasien erst während der Postglazialzeit durch das Vordringen der nordischen Formen verbunden, da eine nähere Verwandtschaft zwischen den nördlichen und der dazwischenliegenden Unterart besteht. Einige ökologische und ethologische Eigentümlichkeiten dieser Wühlmäuse werden kurz besprochen. Es wurde festgestellt, daß eine der nordamerikanischen Unterarten der schmalschädligen Wühlmaus 54 Chromosomen hat; sie ist der einzige Vertreter der Untergattung Stenocranius, dessen Chromosomen untersucht worden sind.
Resumo:
Background: Li-Fraumeni (LFS) and Li-Fraumeni-like (LFL) syndromes are associated to germline TP53 mutations, and are characterized by the development of central nervous system tumors, sarcomas, adrenocortical carcinomas, and other early-onset tumors. Due to the high frequency of breast cancer in LFS/LFL families, these syndromes clinically overlap with hereditary breast cancer (HBC). Germline point mutations in BRCA1, BRCA2, and TP53 genes are associated with high risk of breast cancer. Large rearrangements involving these genes are also implicated in the HBC phenotype. Methods: We have screened DNA copy number changes by MLPA on BRCA1, BRCA2, and TP53 genes in 23 breast cancer patients with a clinical diagnosis consistent with LFS/LFL; most of these families also met the clinical criteria for other HBC syndromes. Results: We found no DNA copy number alterations in the BRCA2 and TP53 genes, but we detected in one patient a 36.4 Kb BRCA1 microdeletion, confirmed and further mapped by array-CGH, encompassing exons 9-19. Breakpoints sequencing analysis suggests that this rearrangement was mediated by flanking Alu sequences. Conclusion: This is the first description of a germline intragenic BRCA1 deletion in a breast cancer patient with a family history consistent with both LFL and HBC syndromes. Our results show that large rearrangements in these known cancer predisposition genes occur, but are not a frequent cause of cancer susceptibility.
Resumo:
South America and Oceania possess numerous floristic similarities, often confirmed by morphological and molecular data. The carnivorous Drosera meristocaulis (Droseraceae), endemic to the Neblina highlands of northern South America, was known to share morphological characters with the pygmy sundews of Drosera sect. Bryastrum, which are endemic to Australia and New Zealand. The inclusion of D. meristocaulis in a molecular phylogenetic analysis may clarify its systematic position and offer an opportunity to investigate character evolution in Droseraceae and phylogeographic patterns between South America and Oceania. was included in a molecular phylogenetic analysis of Droseraceae, using nuclear internal transcribed spacer (ITS) and plastid rbcL and rps16 sequence data. Pollen of D. meristocaulis was studied using light microscopy and scanning electron microscopy techniques, and the karyotype was inferred from root tip meristem. The phylogenetic inferences (maximum parsimony, maximum likelihood and Bayesian approaches) substantiate with high statistical support the inclusion of sect. Meristocaulis and its single species, D. meristocaulis, within the Australian Drosera clade, sister to a group comprising species of sect. Bryastrum. A chromosome number of 2n approx. 3236 supports the phylogenetic position within the Australian clade. The undivided styles, conspicuous large setuous stipules, a cryptocotylar (hypogaeous) germination pattern and pollen tetrads with aperture of intermediate type 78 are key morphological traits shared between D. meristocaulis and pygmy sundews of sect. Bryastrum from Australia and New Zealand. The multidisciplinary approach adopted in this study (using morphological, palynological, cytotaxonomic and molecular phylogenetic data) enabled us to elucidate the relationships of the thus far unplaced taxon D. meristocaulis. Long-distance dispersal between southwestern Oceania and northern South America is the most likely scenario to explain the phylogeographic pattern revealed.