972 resultados para Cholinergic receptor stimulating agent
Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system
Resumo:
BACKGROUND: Bile acids (BAs) regulate cells by activating nuclear and membrane-bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane-bound G-protein-coupled receptor that can mediate the rapid, transcription-independent actions of BAs. Although BAs have well-known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract. METHODS: We generated an antibody to the C-terminus of human GpBAR1, and characterized the antibody by immunofluorescence and Western blotting of HEK293-GpBAR1-GFP cells. We localized GpBAR1 immunoreactivity (IR) and mRNA in the mouse intestine, and determined the mechanism by which BAs activate GpBAR1 to regulate intestinal motility. KEY RESULTS: The GpBAR1 antibody specifically detected GpBAR1-GFP at the plasma membrane of HEK293 cells, and interacted with proteins corresponding in mass to the GpBAR1-GFP fusion protein. GpBAR1-IR and mRNA were detected in enteric ganglia of the mouse stomach and small and large intestine, and in the muscularis externa and mucosa of the small intestine. Within the myenteric plexus of the intestine, GpBAR1-IR was localized to approximately 50% of all neurons and to >80% of inhibitory motor neurons and descending interneurons expressing nitric oxide synthase. Deoxycholic acid, a GpBAR1 agonist, caused a rapid and sustained inhibition of spontaneous phasic activity of isolated segments of ileum and colon by a neurogenic, cholinergic and nitrergic mechanism, and delayed gastrointestinal transit. CONCLUSIONS & INFERENCES: G protein coupled bile acid receptor 1 is unexpectedly expressed in enteric neurons. Bile acids activate GpBAR1 on inhibitory motor neurons to release nitric oxide and suppress motility, revealing a novel mechanism for the actions of BAs on intestinal motility.
Resumo:
Background Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat (‘artificial animal’) applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Results Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. Conclusions We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.
Resumo:
Patients with cholestatic disease exhibit pruritus and analgesia, but the mechanisms underlying these symptoms are unknown. We report that bile acids, which are elevated in the circulation and tissues during cholestasis, cause itch and analgesia by activating the GPCR TGR5. TGR5 was detected in peptidergic neurons of mouse dorsal root ganglia and spinal cord that transmit itch and pain, and in dermal macrophages that contain opioids. Bile acids and a TGR5-selective agonist induced hyperexcitability of dorsal root ganglia neurons and stimulated the release of the itch and analgesia transmitters gastrin-releasing peptide and leucine-enkephalin. Intradermal injection of bile acids and a TGR5-selective agonist stimulated scratching behavior by gastrin-releasing peptide- and opioid-dependent mechanisms in mice. Scratching was attenuated in Tgr5-KO mice but exacerbated in Tgr5-Tg mice (overexpressing mouse TGR5), which exhibited spontaneous pruritus. Intraplantar and intrathecal injection of bile acids caused analgesia to mechanical stimulation of the paw by an opioid-dependent mechanism. Both peripheral and central mechanisms of analgesia were absent from Tgr5-KO mice. Thus, bile acids activate TGR5 on sensory nerves, stimulating the release of neuropeptides in the spinal cord that transmit itch and analgesia. These mechanisms could contribute to pruritus and painless jaundice that occur during cholestatic liver diseases.
Resumo:
OBJECTIVE: Studies have shown that common single-nucleotide polymorphisms (SNPs) in the serotonin 5-HT-2C receptor (HTR2C) are associated with antipsychotic agent-induced weight gain and the development of behavioural and psychological symptoms. We aimed to analyse whether variation in the HTR2C is associated with obesity- and mental health-related phenotypes in a large population-based cohort. METHOD: Six tagSNPs, which capture all common genetic variation in the HTR2C gene, were genotyped in 4978 men and women from the European Prospective Investigation into Cancer (EPIC)-Norfolk study, an ongoing prospective population-based cohort study in the United Kingdom. To confirm borderline significant associations, the -759C/T SNP (rs3813929) was genotyped in the remaining 16 003 individuals from the EPIC-Norfolk study. We assessed social and psychological circumstances using the Health and Life Experiences Questionnaire. Genmod models were used to test associations between the SNPs and the outcomes. Logistic regression was performed to test for association of SNPs with obesity- and mental health- related phenotypes. RESULTS: Of the six HTR2C SNPs, only the T allele of the -759C/T SNP showed borderline significant associations with higher body mass index (BMI) (0.23 kg m(-2); (95% confidence interval (CI): 0.01-0.44); P=0.051) and increased risk of lifetime major depressive disorder (MDD) (Odds ratio (OR): 1.13 (95% CI: 1.01-1.22), P=0.02). The associations between the -759C/T and BMI and lifetime MDD were independent. As associations only achieved borderline significance, we aimed to validate our findings on the -759C/T SNP in the full EPIC-Norfolk cohort (n=20 981). Although the association with BMI remained borderline significant (beta=0.20 kg m(-2); 95% CI: 0.04-0.44, P=0.09), that with lifetime MDD (OR: 1.01; 95% CI: 0.94-1.09, P=0.73) was not replicated. CONCLUSIONS: Our findings suggest that common HTR2C gene variants are unlikely to have a major role in obesity- and mental health-related traits in the general population.
Resumo:
Cigarette smoke (CS) inhalation causes an early inflammatory response in rodent airways by stimulating capsaicin-sensitive sensory neurons that express transient receptor potential cation channel, subfamily V, member 1 (TRPV1) through an unknown mechanism that does not involve TRPV1. We hypothesized that 2 alpha,beta-unsaturated aldehydes present in CS, crotonaldehyde and acrolein, induce neurogenic inflammation by stimulating TRPA1, an excitatory ion channel coexpressed with TRPV1 on capsaicin-sensitive nociceptors. We found that CS aqueous extract (CSE), crotonaldehyde, and acrolein mobilized Ca2+ in cultured guinea pig jugular ganglia neurons and promoted contraction of isolated guinea pig bronchi. These responses were abolished by a TRPA1-selective antagonist and by the aldehyde scavenger glutathione but not by the TRPV1 antagonist capsazepine or by ROS scavengers. Treatment with CSE or aldehydes increased Ca2+ influx in TRPA1-transfected cells, but not in control HEK293 cells, and promoted neuropeptide release from isolated guinea pig airway tissue. Furthermore, the effect of CSE and aldehydes on Ca2+ influx in dorsal root ganglion neurons was abolished in TRPA1-deficient mice. These data identify alpha,beta-unsaturated aldehydes as the main causative agents in CS that via TRPA1 stimulation mediate airway neurogenic inflammation and suggest a role for TRPA1 in the pathogenesis of CS-induced diseases.
Resumo:
Trypsin and mast cell tryptase cleave proteinase-activated receptor 2 (PAR2) to induce alterations in contraction of airway smooth muscle that have been implicated in asthma in experimental animals. Although tryptase inhibitors are under development for treatment of asthma, little is known about the localization and function of PAR2 in human airways. We detected PAR2 expression in primary cultures of human airway smooth muscle cells using reverse transcriptase/polymerase chain reaction (RT-PCR) and immunofluorescence. The PAR2 agonists trypsin, tryptase, and an activating peptide (SLIGKV-NH2) stimulated calcium mobilization in these cells. PAR2 agonists strongly desensitized responses to a second challenge of trypsin and SLIGKV-NH2, but not to thrombin, indicating that they activate a receptor distinct from the thrombin receptors. Immunoreactive PAR2 was detected in smooth muscle, epithelium, glands, and endothelium of human bronchi. Trypsin, SLIGKV-NH2, and tryptase stimulated contraction of isolated human bronchi. Contraction was increased by removal of the epithelium and diminished by indomethacin. Thus, PAR2 is expressed by human bronchial smooth muscle where its activation mobilizes intracellular Ca2+ and induces contraction. These results are consistent with the hypothesis that PAR2 agonists, including tryptase, induce bronchoconstriction of human airway by stimulating smooth muscle contraction. PAR2 antagonists may be useful drugs to prevent bronchoconstriction.
Resumo:
C16-YEALRVANEVTLN, a peptide amphiphile (PA) incorporating a biologically active amino acid sequence found in lumican, has been examined for its influence upon collagen synthesis by human corneal fibroblasts in vitro, and the roles of supra-molecular assembly and activin receptor-like kinase ALK receptor signaling in this effect were assessed. Cell viability was monitored using the Alamar blue assay, and collagen synthesis was assessed using Sirius red. The role of ALK signaling was studied by receptor inhibition. Cultured human corneal fibroblasts synthesized significantly greater amounts of collagen in the presence of the PA over both 7-day and 21-day periods. The aggregation of the PA to form nanotapes resulted in a notable enhancement in this activity, with an approximately two-fold increase in collagen production per cell. This increase was reduced by the addition of an ALK inhibitor. The data presented reveal a stimulatory effect upon collagen synthesis by the primary cells of the corneal stroma, and demonstrate a direct influence of supra-molecular assembly of the PA upon the cellular response observed. The effects of PA upon fibroblasts were dependent upon ALK receptor function. These findings elucidate the role of self-assembled nanostructures in the biological activity of peptide amphiphiles, and support the potential use of a self-assembling lumican derived PA as a novel biomaterial, intended to promote collagen deposition for wound repair and tissue engineering purposes
Resumo:
BACKGROUND/AIMS: Estrogens are important effectors of reproduction and are critical for upregulating female reproductive behavior or lordosis in females. In addition to the importance of transcriptional regulation of genes by 17beta-estradiol-bound estrogen receptors (ER), extranuclear signal transduction cascades such as protein kinase A (PKA) are also important in regulating female sexual receptivity. GPR30 (G-protein coupled receptor 30), also known as GPER1, a putative membrane ER (mER), is a G protein-coupled receptor that binds 17beta-estradiol with an affinity that is similar to that possessed by the classical nuclear ER and activates both PKA and extracellular-regulated kinase signaling pathways. The high expression of GPR30 in the ventromedial hypothalamus, a region important for lordosis behavior as well as kinase cascades activated by this receptor, led us to hypothesize that GPR30 may regulate lordosis behavior in female rodents. METHOD: In this study, we investigated the ability of G-1, a selective agonist of GPR30, to regulate lordosis in the female mouse by administering this agent prior to progesterone in an estradiol-progesterone priming paradigm prior to testing with stud males. RESULTS: As expected, 17beta-estradiol benzoate (EB), but not sesame oil, increased lordosis behavior in female mice. G-1 also increased lordosis behavior in female mice and decreased the number of rejective responses towards male mice, similar to the effect of EB. The selective GPR30 antagonist G-15 blocked these effects. CONCLUSION: This study demonstrates that activation of the mER GPR30 stimulates social behavior in a rodent model in a manner similar to EB.
Resumo:
Cytokines (IL-6, IL-10, and TNF-alpha) are increased after exhaustive exercise in the retroperitoneal adipose tissue (RPAT) and mesenteric adipose tissue (MEAT). An exhaustive acute exercise protocol induces inflammation in adipose tissue that lasts 6 h after the exercise has ended. It is well-established that this protocol increases circulating plasma levels of non-esterified fatty acids (NEFAs) and lipopolysaccharides (LPS), compounds that are important in stimulating signaling via toll like receptor-4 (TLR-4) in different type cells. In the present study, we investigated the regulation of TLR-4 and DNA-binding of nuclear factor-kappa Bp65 (NF-kappa Bp65) in different depots of adipose tissue in rats after exhaustive exercise. Rats were killed by decapitation immediately (E0 group, n = 6), 2 (E2 group, n = 6), and 6 h (E6 group, n = 6) after the exhaustive exercise, which consisted of running on a treadmill (approximately 70% V(O2max)) for 50 min and then running at an elevated rate that increased at 1 m/min, until exhaustion. The control group (C group, n = 6) was not subjected to exercise. In RPAT, TLR-4, MYD-88, and IkB alpha increased in the E2 group after exercise. MYD-88 and TRAF6 remained increased in the E6 group in comparison with the control group. DNA-binding of NF-kappa Bp65 was not altered. In MEAT, TLR-4, MYD-88, TRAF6, and DNA-binding of NF-kappa Bp65 were increased only in the E6 group. In conclusion, we have shown that increases in pro-inflammatory cytokines in adipose tissue pads after exhaustive exercise may be mediated via TLR-4 signaling, leading to increases in NF-kappa Bp65 binding to DNA in MEAT. J. Cell. Physiol. 226: 1604-1607, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Proline-rich peptides from Bothrops jararaca venom (Bj-PRO) were characterized based on the capability to inhibit the somatic angiotensin-converting enzyme. The pharmacological action of these peptides resulted in the development of Captopril, one of the best examples of a target-driven drug discovery for treatment of hypertension. However, biochemical and biological properties of Bj-PROs were not completely elucidated yet, and many recent studies have suggested that their activity relies on angiotensin-converting enzyme-independent mechanisms. Here, we show that Bj-PRO-7a (
Resumo:
Islet neogenesis associated protein (INGAP) increases islet mass and insulin secretion in neonatal and adult rat islets. lit the Present Study, we measured the short- and long-term effects of INGAP-PP (a pentadecapeptide having the 104-118 amino acid sequence of INGAP) upon islet protein expression and phosphorylation of components of the PI3K, MAPK and cholinergic pathways, and on insulin secretion. Short-term exposure of neonatal islets to INGAP-PP (90 s, 5, 15, and 30 min) significantly increased Akt1(-Ser473) and MAPK3/1(-Thr202/Tyr204) phosphorylation and INGAP-PP also acutely increased insulin secretion from islets perifused with 2 and 20 mM glucose. Islets cultured for 4 days in the presence of INGAP-PP showed an increased expression of Akt1, Frap1, and Mapk1 mRNAs as well as of the muscarinic M3 receptor subtype, and phospholipase C (PLC)-beta 2 proteins. These islets also showed increased Akt1 and MAPK3/1 protein phosphorylation. Brief exposure of INGAP-P-treated islets to carbachol (Cch) significantly increased P70S6K(-Thr389) and MAPK3/1 phosphorylation and these islets released more insulin when challenged with Cch that was prevented by the M3 receptor antagonist 4-DAMP in a concentration-dependent manner. In conclusion, these data indicate that short- and long-term exposure to INGAP-PP significantly affects the expression and the phosphorylation of proteins involved in islet PI3K and MAPK signaling pathways. The observations of INGAPP-PP-stimulated up-regulation of cholinergic M3 receptors and PLC-beta 2 proteins, enhanced P70S6K and MAIIK3/1 phosphorylation and Cch-induced insulin secretion suggest a participation of the cholinergic pathway in INGAP-PP-mediated effects.
Resumo:
Nicotinic acetylcholine receptors (nAChRs) were studied in detail in the past regarding their interaction with therapeutic and drug addiction related compounds. Using fast kinetic whole-cell recording, we have now studied effects of tacrine, an agent used clinically to treat Alzheimer`s disease, on currents elicited by activation of rat alpha(3)beta(4) nAChR heterologously expressed in KX alpha(3)beta(4)R2 cells. Characterization of receptor activation by nicotine used as agonist revealed a K(d) of 23 +/- 0.2 mu M and 4.3 +/- 1.3 for the channel opening equilibrium constant, Phi(-1). Experiments were performed to investigate whether tacrine is able to activate the alpha(3)beta(4) nAChR. Tacrine did not activate whole-cell currents in KX alpha(3)beta(4)R2 cells but inhibited receptor activity at submicromolar concentration. Dose response curves obtained with increasing agonist or inhibitor concentration revealed competitive inhibition of nAChRs by tacrine, with an apparent inhibition constant, K(I), of 0.8 mu M. The increase of Phi(-1) in the presence of tacrine suggests that the drug stabilizes a nonconducting open channel form of the receptor. Binding studies with TCP and MK-801 ruled out tacrine binding to common allosteric sites of the receptor. Our study suggests a novel mechanism for action of tacrine on nAChRs besides inhibition of acetylcholine esterase.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Infertility represents one of the main long-term consequences of the chemotherapy used for the adjuvant treatment of breast cancer. Approximately 60-65% of breast cancers express the nuclear hormone receptor in premenopausal women. Adjuvant endocrine therapy is an integral component of care for patients with hormone receptor-positive (HR+) tumours. The GnRH agonist (GnRHa) alone or in combination with tamoxifen produces results at least similar to those obtained with the different chemotherapy protocols in patients with HR+ breast cancer with respect to recurrence-free survival and overall survival. It is time to indicate adjuvant therapy with GnRHa associated with tamoxifen for patients with breast cancer (HR+ tumours) if they want to preserve their reproductive function. The evaluation of ovarian reserve tests: follicle stimulating hormone (FSH), anti-Mullerian hormone (AMH), inhibin B, antral follicle count (AFC) and ovarian volume 6 months, and 1 year after the end of therapy with GnRHa/tamoxifen must be realised. The recurrence-free survival and overall survival should be analysed. The major implication of this hypothesis will be to avoid adjuvant chemotherapy for patients with breast cancer (HR+ tumours) that request fertility preservation. It is expected that ovarian function should not be altered in almost all cases and subsequent pregnancy a real possibility. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Salivation induced by intraperitoneal (i.p.) injections of pilocarpine (cholinergic agonist) is reduced by intracerebroventricular (i.c.v.) injections of moxonidine (alpha(2) adrenergic and imidazoline receptor agonist). In the present study, we investigated the involvement of central alpha(2) adrenergic receptors in the inhibitory effect of i.c.v. moxonidine on i.p. pilocarpine-induced salivation. Male Holtzman rats with stainless steel cannula implanted into the lateral ventricle (LV) were used. Saliva was collected using pre-weighted small cotton balls inserted into the animal's mouth under ketamine (100 mg kg(-1)) anesthesia. Salivation was induced by i.p. injection of pilocarpine (4 mu mol kg(-1)). Pilocarpine-induced salivation was reduced by i.c.v. injection of moxonidine (10 nmol) and enhanced by i.c.v. injections of either RX 821002 (160 nmol) or yohimbine (320 nmol). The inhibitory effect of i.c.v. moxonidine on pilocarpine-induced salivation was abolished by prior i.c.v. injections of the alpha(2) adrenergic receptor antagonists, RX 821002 (160 nmol) or yohimbine (160 and 320 nmol). The alpha(1) adrenergic receptor antagonist prazosin (320 nmol) injected i.c.v. did not change the effect of moxonidine on pilocarpine-induced salivation. The results suggest that moxonidine acts on central alpha(2) adrenergic receptors to inhibit pilocarpine-induced salivation, and that this salivation is tonically inhibited by central alpha(2) adrenergic receptors. (C) 2002 Elsevier B.V. All rights reserved.