951 resultados para Choice under complete uncertainty
Resumo:
In a team of multiple agents, the pursuance of a common goal is a defining characteristic. Since agents may have different capabilities, and effects of actions may be uncertain, a common goal can generally only be achieved through a careful cooperation between the different agents. In this work, we propose a novel two-stage planner that combines online planning at both team level and individual level through a subgoal delegation scheme. The proposal brings the advantages of online planning approaches to the multi-agent setting. A number of modifications are made to a classical UCT approximate algorithm to (i) adapt it to the application domains considered, (ii) reduce the branching factor in the underlying search process, and (iii) effectively manage uncertain information of action effects by using information fusion mechanisms. The proposed online multi-agent planner reduces the cost of planning and decreases the temporal cost of reaching a goal, while significantly increasing the chance of success of achieving the common goal.
Resumo:
We report the genome sequence of Thermococcus superprofundus strain CDGST, a new piezophilic and hyperthermophilic member of the order Thermococcales isolated from the world’s deepest hydrothermal vents, at the Mid-Cayman Rise. The genome is consistent with a heterotrophic, anaerobic, and piezophilic lifestyle.
Resumo:
We present a general multistage stochastic mixed 0-1 problem where the uncertainty appears everywhere in the objective function, constraints matrix and right-hand-side. The uncertainty is represented by a scenario tree that can be a symmetric or a nonsymmetric one. The stochastic model is converted in a mixed 0-1 Deterministic Equivalent Model in compact representation. Due to the difficulty of the problem, the solution offered by the stochastic model has been traditionally obtained by optimizing the objective function expected value (i.e., mean) over the scenarios, usually, along a time horizon. This approach (so named risk neutral) has the inconvenience of providing a solution that ignores the variance of the objective value of the scenarios and, so, the occurrence of scenarios with an objective value below the expected one. Alternatively, we present several approaches for risk averse management, namely, a scenario immunization strategy, the optimization of the well known Value-at-Risk (VaR) and several variants of the Conditional Value-at-Risk strategies, the optimization of the expected mean minus the weighted probability of having a "bad" scenario to occur for the given solution provided by the model, the optimization of the objective function expected value subject to stochastic dominance constraints (SDC) for a set of profiles given by the pairs of threshold objective values and either bounds on the probability of not reaching the thresholds or the expected shortfall over them, and the optimization of a mixture of the VaR and SDC strategies.
Resumo:
The aim of this work is to present a general overview of state-of-the-art related to design for uncertainty with a focus on aerospace structures. In particular, a simulation on a FCCZ lattice cell and on the profile shape of a nozzle will be performed. Optimization under uncertainty is characterized by the need to make decisions without complete knowledge of the problem data. When dealing with a complex problem, non-linearity, or optimization, two main issues are raised: the uncertainty of the feasibility of the solution and the uncertainty of the objective value of the function. In the first part, the Design Of Experiments (DOE) methodologies, Uncertainty Quantification (UQ), and then Uncertainty optimization will be deepened. The second part will show an application of the previous theories on through a commercial software. Nowadays multiobjective optimization on high non-linear problem can be a powerful tool to approach new concept solutions or to develop cutting-edge design. In this thesis an effective improvement have been reached on a rocket nozzle. Future work could include the introduction of multi scale modelling, multiphysics approach and every strategy useful to simulate as much possible real operative condition of the studied design.
Resumo:
In this paper, a joint location-inventory model is proposed that simultaneously optimises strategic supply chain design decisions such as facility location and customer allocation to facilities, and tactical-operational inventory management and production scheduling decisions. All this is analysed in a context of demand uncertainty and supply uncertainty. While demand uncertainty stems from potential fluctuations in customer demands over time, supply-side uncertainty is associated with the risk of “disruption” to which facilities may be subject. The latter is caused by external factors such as natural disasters, strikes, changes of ownership and information technology security incidents. The proposed model is formulated as a non-linear mixed integer programming problem to minimise the expected total cost, which includes four basic cost items: the fixed cost of locating facilities at candidate sites, the cost of transport from facilities to customers, the cost of working inventory, and the cost of safety stock. Next, since the optimisation problem is very complex and the number of evaluable instances is very low, a "matheuristic" solution is presented. This approach has a twofold objective: on the one hand, it considers a larger number of facilities and customers within the network in order to reproduce a supply chain configuration that more closely reflects a real-world context; on the other hand, it serves to generate a starting solution and perform a series of iterations to try to improve it. Thanks to this algorithm, it was possible to obtain a solution characterised by a lower total system cost than that observed for the initial solution. The study concludes with some reflections and the description of possible future insights.
Resumo:
In recent years, global supply chains have increasingly suffered from reliability issues due to various external and difficult to-manage events. The following paper aims to build an integrated approach for the design of a Supply Chain under the risk of disruption and demand fluctuation. The study is divided in two parts: a mathematical optimization model, to identify the optimal design and assignments customer-facility, and a discrete-events simulation of the resulting network. The first one describes a model in which plant location decisions are influenced by variables such as distance to customers, investments needed to open plants and centralization phenomena that help contain the risk of demand variability (Risk Pooling). The entire model has been built with a proactive approach to manage the risk of disruptions assigning to each customer two types of open facilities: one that will serve it under normal conditions and a back-up facility, which comes into operation when the main facility has failed. The study is conducted on a relatively small number of instances due to the computational complexity, a matheuristic approach can be found in part A of the paper to evaluate the problem with a larger set of players. Once the network is built, a discrete events Supply Chain simulation (SCS) has been implemented to analyze the stock flow within the facilities warehouses, the actual impact of disruptions and the role of the back-up facilities which suffer a great stress on their inventory due to a large increase in demand caused by the disruptions. Therefore, simulation follows a reactive approach, in which customers are redistributed among facilities according to the interruptions that may occur in the system and to the assignments deriving from the design model. Lastly, the most important results of the study will be reported, analyzing the role of lead time in a reactive approach for the occurrence of disruptions and comparing the two models in terms of costs.
Correlation between margin fit and microleakage in complete crowns cemented with three luting agents
Resumo:
Microleakage can be related to margin misfit. Also, traditional microleakage techniques are time-consuming. This study evaluated the existence of correlation between in vitro margin fit and a new microleakage technique for complete crowns cemented with 3 different luting agents. Thirty human premolars were prepared for full-coverage crowns with a convergence angle of 6 degrees, chamfer margin of 1.2 mm circumferentially, and occlusal reduction of 1.5 mm. Ni-Cr cast crowns were cemented with either zinc phosphate (ZP) (S.S. White), resin-modified glass-ionomer (RMGI) (Rely X Luting Cement) or a resin-based luting agent (RC) (Enforce). Margin fit (seating discrepancy and margin gap) was evaluated according to criteria in the literature under microscope with 0.001 mm accuracy. After thermal cycling, crowns were longitudinally sectioned and microleakage scores at tooth-cement interface were obtained and recorded at ×100 magnification. Margin fit parameters were compared with the one-way ANOVA test and microleakage scores with Kruskal-Wallis and Dunn's tests (alpha=0.05). Correlation between margin fit and microleakage was analyzed with the Spearman's test (alpha=0.05). Seating discrepancy and marginal gap values ranged from 81.82 µm to 137.22 µm (p=0.117), and from 75.42 µm to 78.49 µm (p=0.940), respectively. Marginal microleakage scores were ZP=3.02, RMGI=0.35 and RC=0.12 (p<0.001), with no differences between RMGI and RC scores. The correlation coefficient values ranged from -0.27 to 0.30 (p>0.05). Conclusion: Margin fit parameters and microleakage showed no strong correlations; cast crowns cemented with RMGI and RC had lower microleakage scores than ZP cement.
Resumo:
This in vitro study evaluated the temperature of dentures after different microwave irradiation protocols. Two complete dentures (one maxillary and one mandibular denture) were irradiated separately 4 times for each of the following 5 protocols: dentures immersed in water (G1- 6 min, G2- 3 min); dentures kept dry (G3- 6 min); dentures placed in the steam sterilizer (G4- 6 min, G5- 3 min). The final temperature of the dentures was gauged in a thin and in a thick area of each denture with an infrared thermometer. All groups presented an increase in the resin base temperature. The thin areas of the dentures underwent greater heating than the thick areas. There was no significant difference (p>0.05) between the final mean temperatures of dentures immersed in water for 6 (G1) and 3 min (G2). However, the final mean temperatures recorded in G1 and G2 exceeded 71°C and were significantly higher (<0.001) than the final mean temperatures recorded in the other groups. It may be concluded that denture base resins subjected to microwave irradiation immersed in water may be exposed to deleterious temperatures.
Resumo:
Application of calcium silicate (SiCa) as soil acidity corrective was evaluated in a Rhodic Hapludox soil with palisade grass conducted under pasture rotation system with different grazing intensities. Experimental design was complete randomized blocks with four grazing intensities - grazing intensities were imposed by forage supply (50, 100, 150 and 200 kg t-1 of DM per LW) - in experimental plots with four replicates and, in the subplots, with seven doses of calcium silicate combined with lime: 0+0, 2+0, 4+0, 6+0, 2+4, 4+2 and 0+6 t ha-1, respectively. In the soil, it was evaluated the effect of four levels of calcium silicate (0, 2, 4 and 6 t ha-1) at 45, 90, and 365 days at three depths (0-10, 10-20 and 20-40 cm) and at 365 days, it was included one level of lime (6 t ha-1). For determination of leaf chemical composition and silicate content in the soil, four levels of calcium silicate (0, 2, 4 and 6 t ha-1) were evaluated at 45 and 365 days and at 45 days only for leaf silicate, whereas for dry matter production, all corrective treatments applied were evaluated in evaluation seasons. Application of calcium silicate was positive for soil chemical traits related to acidity correction (pH(CaCl2), Ca, Mg, K, H+Al and V), but the limestone promoted better results at 365 days. Leaf mineral contents were not influenced by application of calcium silicate, but there was an increase on silicate contents in leaves and in the soil. Dry matter yield and chemical composition of palisade grass improved with the application of correctives.
Resumo:
Background: Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results: In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a sigma(54)-dependent manner. A more complete picture of the sigma(54) regulon was achieved by combining the transcriptome data with an in silico search for potential sigma(54)-dependent promoters, using a position weight matrix approach. One of these sigma(54)-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a sigma(54)-dependent promoter. Conclusions: Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the sigma(54) regulon.
Resumo:
This paper is a continuation and a complement of our previous work on isomorphic classification of some spaces of compact operators. We improve the main result concerning extensions of the classical isomorphic classification of the Banach spaces of continuous functions on ordinals. As an application, fixing an ordinal a and denoting by X(xi), omega(alpha) <= xi < omega(alpha+1), the Banach space of all X-valued continuous functions defined in the interval of ordinals [0,xi] and equipped with the supremum, we provide complete isomorphic classifications of some Banach spaces K(X(xi),Y(eta)) of compact operators from X(xi) to Y(eta), eta >= omega. It is relatively consistent with ZFC (Zermelo-Fraenkel set theory with the axiom of choice) that these results include the following cases: 1.X* contains no copy of c(0) and has the Mazur property, and Y = c(0)(J) for every set J. 2. X = c(0)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < infinity. 3. X = l(p)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < p < infinity.
Resumo:
Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.
Resumo:
In biopulping, efficient wood colonization by a selected white-rot fungus depends on previous wood chip decontamination to avoid the growth of primary molds. Although simple to perform in the laboratory, in large-scale biopulping trials, complete wood decontamination is difficult to achieve. Furthermore, the use of fungal growth promoters such as corn steep liquor enhances the risk of culture contamination. This paper evaluates the ability of the biopulping fungus Ceriporiopsis subvermispora to compete with indigenous fungi in cultures of fresh or poorly decontaminated Eucalyptus grandis wood chips. While cultures containing autoclaved wood chips were completely free of contaminants, primary molds grew rapidly when non-autoclaved wood chips were used, resulting in heavily contaminated cultures, regardless of the C. subvermispora inoculum/wood ratio evaluated (5, 50 and 3000 mg mycelium kg(-1) wood). Studies on benomyl-amended medium suggested that the fungi involved competed by consumption of the easily available nutrient sources, with C. subvermispora less successful than the contaminant fungi. The use of acid-washed wood chips decreased the level of such contaminant fungi, but production of manganese peroxidase and xylanases was also decreased under these conditions. Nevertheless, chemithermomechanical pulping of acid-washed samples biotreated under non-aseptic conditions gave similar fibrillation improvements compared to samples subjected to the standard biodegradation process using autoclaved wood chips.
Resumo:
This paper presents new insights and novel algorithms for strategy selection in sequential decision making with partially ordered preferences; that is, where some strategies may be incomparable with respect to expected utility. We assume that incomparability amongst strategies is caused by indeterminacy/imprecision in probability values. We investigate six criteria for consequentialist strategy selection: Gamma-Maximin, Gamma-Maximax, Gamma-Maximix, Interval Dominance, Maximality and E-admissibility. We focus on the popular decision tree and influence diagram representations. Algorithms resort to linear/multilinear programming; we describe implementation and experiments. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective To assess the efficacy of zeta-cypermethrin pour-on to control cattle lice. Design Five field trials in south-eastern Australia. Procedure Zeta-cypermethrin pour-on, deltamethrin pour-on and pour-on vehicle were applied to groups of 10 cattle. Lice were counted before treatment and 14, 28, 42 and 56 days after treatment. Results Zeta-cypermethrin pour-on given at 2.5 mg/kg was equivalent to, or marginally more effective than a deltamethrin pour-on at 0.75 mg/kg. It eliminated B bovis and H eurysternus and gave good control of L vituli and S capillatus. Zeta-cypermethrin at 1 mg/kg gave good control of B bovis and H eurysternus but was not satisfactory against L vituli and S capillatus. Conclusion Zeta-cypermethrin pour-on, given at 2.5 mg/kg, is an effective treatment for cattle lice control. Zeta-cypermethrin, and other synthetic pyrethroid pour-ons, are the treatment of choice to control B bovis.