1000 resultados para Ceramic red
Resumo:
Reduction behaviour of Fe3+/Al2O3 obtained by the decomposition of the oxalate precursor has been investigated by employing X-ray diffraction (XRD), Mössbauer spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. Calcination of Fe3+/Al2O3 at or below 1070 K yields mainly a poorly ordered, fine particulate form of ?-Al2�xFexO3. Calcination at or above 1220 K yields ?-Al2�xFexO3. Reduction of Fe3+/Al2O3 samples calcined at or below 1070 K gives the FeAl2O4 spinel on reduction at 870 K; samples calcined at or above 1220 K give Al2-xFexO3 with a very small proportion of metallic iron. Fe3+/Al2O3 samples calcined at 1220 K or above yield metallic iron and a very small proportion of the spinel on reduction below 1270 K. In the samples reduced at or above 1270 K, the main product is metallic iron in both ferromagnetic and superparamagnetic forms. The oxalate precursor route yields more metallic iron than the sol�gel route.
Resumo:
CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence D-5(0) -> F-7(J) (J = 0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to D-5(0) -> F-7(2) of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to D-5(0) -> F-7(1) of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO32- group. The optical energy band gap is widened with increase of Eu3+ ion dopant. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents laboratory investigations on the visible corona and discharge radio noise. Experimental investigations are carried on various types of normal and anti-fog types of ceramic disc insulator at the recently established artificial pollution experimental facility. The results obtained from the experimental investigations show better performance for the disc insulators fitted with field reduction electrodes. In addition to the corona and radio noise investigations the comparisons are also made for the experimental results of the potential distribution across the insulator string (with and without filed reduction electrode) with the simulation results obtained by using Surface Charge Simulation Method.
Resumo:
Fe-Cr/Al2O3 metal-ceramic composites prepared by hydrogen reduction at different temperatures and for different periods have been investigated by a combined use of Mossbauer spectroscopy, x-ray diffraction, transmission electron microscopy, and energy-dispersive x-ray spectroscopy in order to obtain information on the nature of the metallic species formed. Total reduction of Fe3+ does not occur by increasing the reduction time at 1320 K from 1 to 30 h, and the amount of superparamagnetic metallic species is essentially constant (about 10%). Temperatures higher than 1470 K are needed to achieve nearly total reduction of substitutional Fe3+. Interestingly, iron favors the reduction of chromium. The composition of the Fe-Cr particles is strongly dependent on their size, the Cr content being higher in particles smaller than 10 nm.
Resumo:
Several glass-ceramic compositions based on lithium silicates have been examined using thermal expansivity, X-ray diffraction, electrical conductivity, electron microscopy and solid state NMR studies. Role of P2O5 in nucleation and of Al2O3 in smoothening expansion behaviour have been particularly highlighted. Magic angle spinning NMR has been used to ascertain presence of Al in tetrahedral positions in the glassy phase
Resumo:
A simple, cost-effective and environment-friendly pathway for preparing highly porous matrix of giant dielectric material CaCu3Ti4O12 (CCTO) through combustion of a completely aqueous precursor solution is presented. The pathway yields phase-pure and impurity-less CCTO ceramic at an ultra-low temperature (700 degrees C) and is better than traditional solid-state reaction schemes which fail to produce pure phase at as high temperature as 1000 degrees C (Li, Schwartz, Phys. Rev. B 75, 012104). The porous ceramic matrix on grinding produced CCTO powder having particle size in submicron order with an average size 300 nm. On sintering at 1050 degrees C for 5 h the powder shows high dielectric constants (>10(4) at all frequencies from 100 Hz to 100 kHz) and low loss (with 0.05 as the lowest value) which is suitable for device applications. The reaction pathway is expected to be extended to prepare other multifunctional complex perovskite materials. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Coarse (BOn/2)-O-n+/xH(2)O (10
Resumo:
beta protein, a key component of Red-pathway of phage lambda is necessary for its growth and general genetic recombination in recombination-deficient mutants of Escherichia coli. To facilitate studies on structure-function relationships, we overexpressed beta protein and purified it to homogeneity. A chemical cross-linking reagent, glutaraldehyde, was used to stabilize the physical association of beta protein in solution. A 67-kDa band, corresponding to homodimer, was identified after separation by SDS-polyacrylamide gel electrophoresis. Stoichiometric measurements indicated a site-size of 1 monomer of beta protein/5 nucleotide residues. Electrophoretic gel mobility shift assays suggested that beta protein formed stable nucleoprotein complexes with 36-mer, but not with 27- or 17-mer DNA. Interestingly, the interaction of beta protein with DNA and the stability of nucleoprotein complexes was dependent on the presence of MgCl2, and the binding was abolished by 250 mM NaCl. The K-d of beta protein binding to 36-mer DNA was on the order of 1.8 x 10(-6) M. Photochemical cross-linking of native beta protein or its fragments, generated by chymotrypsin, to 36-mer DNA was performed to identify its DNA-binding domain. Characterization of the cross-linked peptide disclosed that amino acids required for DNA-binding specificity resided within a 20-kDa peptide at the N-terminal end. These findings provide a basis for further understanding oi the structure and function of beta protein.
Resumo:
Fe/AlOOH gels calcined and reduced at different temperatures have been investigated by a combined use of Mossbauer spectroscopy, x-ray diffraction, and electron microscopy in order to obtain information on the nature of the iron species formed as well as the various reduction processes. Calcination at or below 1070 K mainly gives reducible Fe3+ while calcination at higher temperatures gives substitutional Fe3+ in the form of Al2-xFexO3. The Fe3+ species in the calcined samples are, by and large, present in the form of small superparamagnetic particles. Crystallization of Al2O3 from the gels is catalyzed by Fe2O3 as well as FeAl2O4. Fe (20 wt. %)/AlOOH gels calcined at or below 870 K give FeAl2O4 when reduced in hydrogen at 1070 K or lower and a ferromagnetic Fe0-Al2O3 composite (with the metallic Fe particles >100 angstrom) when reduced at 1270 K. Samples calcined at 1220 K or higher give the Fe0-Al2O3 composite when reduced in the 870-12,70 K range, but a substantial proportion of Fe3+ remains unreduced in the form of Al2-xFexO3, showing thereby the extraordinary stability of substitutional Fe3+ to reduction even at high temperatures. Besides the ferromagnetic Fe0-Al2O3 composite, high-temperature reduction of Al2-xFexO3 yields a small proportion of superparamagnetic Fe0-Al2O3 wherein small metallic particles (<100 angstrom) are embedded in the ceramic matrix. In order to preferentially obtain the Fe0-Al2O3 composite on reduction, Fe/AlOOH gels should be calcined at low temperatures (less-than-or-equal-to 1100 K); high-temperature calcination results in Al2-xFexO3. Several modes of formation of FeAl2O4 are found possible during reduction of the gels, but a novel one is that involving the reaction, 2Fe3+ + Fe0 --> 3Fe2+.
Resumo:
Red sandalwood (Pterocarpus santalinus L.), belonging to the family Fabaceae, is one of the most valuable trees, and has limited distribution in India. In view of its high price, restricted distribution and usefulness as a timber tree, there is urgent need to obtain improved lines, in both quality and quantity. We have established a method for production of complete plantlets by tissue culture. We report here the successful development of red sandalwood plantlets by induction of multiple shoots from shoot tips, and successful transfer of micropropagated plants to soil.
Resumo:
The pyroelectric and electrostrictive properties of lead zinc niobate-lead titanate-barium titanate (PZN-BT-PT) ceramic solid solution were investigated. These properties of the (1 - x)PZN.xBT series were qualitatively explained with a composition fluctuation model. The pyroelectric depolarization temperatures of (1 - x - y)PZN.xBT.yPT ceramics were utilized to select compositions for room-temperature electrostrictive applications. Among them, 0.85PZN.0.10BT.0.05PT ceramic with Q11 = 0.018 m4/C2, Q12 = -0.0085 m4/C2, S2 at 25 kV/cm = -6.1 x 10(-4), T(max) = 75-degrees-C at 1 kHz, and T(t) = 27-degrees-C shows optimum properties for micropositioner applications.
Resumo:
A general survey is presented on the generation and characteristics of Red Muds. The interrelationship between Mud properties, their disposal and utilisation is emphasised. After an outline on the possible applications for Red Muds, the problems related to important (potential) uses have been pointed out. Suggestions have been incorporated on what needs to be done to promote the utilisation of Red Muds particularly in the Indian context.
Resumo:
Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.
Resumo:
This paper is aimed at investigating the acoustic emission activities during indentation toughness tests on an alumina based wear resistant ceramic and 25 wt% silicon carbide whisker (SIC,) reinforced alumina composite. It has been shown that the emitted acoustic emission signals characterize the crack growth during loading. and unloading cycles in an indentation test. The acoustic emission results indicate that in the case of the composite the amount of crack growth during unloading is higher than that of loading, while the reverse is true in case of the wear resistant ceramics. Acoustic emission activity observed in wear resistant ceramic is less than that in the case of composite. An attempt has been made to correlate the acoustic emission signals with crack growth during indentation test.