970 resultados para Cell-differentiation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous work has shown that aggregating fetal brain cell cultures are able to attain a highly differentiated state, and that their development is greatly enhanced by growth and/or differentiation factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and the protein kinase C-activating tumor promoter mezerein. The present study shows that in these 3-dimensional cultures the peptide growth factors EGF and bFGF as well as mezerein are able to induce the expression of the proto-oncogene c-fos. This induction was rapid and transient, in good agreement with observations reported from a wide variety of cell types in vitro. The maximal levels of c-fos mRNA found after stimulation were low in immature cultures and increased greatly as maturation progressed. Of the three factors tested, mezerein was the most potent inducer of c-fos. In contrast to the peptide growth factors EGF and bFGF which were found to induce c-fos only in glial cells, mezerein was stimulatory in glial cells as well as in neurons. A similar cell type specificity has been observed previously for the maturation-enhancing response in immature aggregate cultures. However, in the present study no correlation was found between the degree of c-fos induction and the extent of the maturation-enhancing stimulation. Immature cultures known to be most sensitive and responsive to these maturation-enhancing agents required relatively high doses of peptide growth factors for the induction of c-fos, and the maximal levels of c-fos mRNA elicited were much lower than those in differentiated cultures which did not show any long-term response to these stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in mouse embryos and are critical regulators of lymphoid lineage fate determination. However, it remains unclear how Notch regulates the balance between HSC self-renewal and differentiation in the adult bone marrow (BM). Here we report a novel mechanism that prevents HSCs from undergoing premature lymphoid differentiation in BM. Using a series of in vivo mouse models and functional HSC assays, we show that leukemia/lymphoma related factor (LRF) is necessary for HSC maintenance by functioning as an erythroid-specific repressor of Delta-like 4 (Dll4) expression. Lrf deletion in erythroblasts promoted up-regulation of Dll4 in erythroblasts, sensitizing HSCs to T-cell instructive signals in the BM. Our study reveals novel cross-talk between HSCs and erythroblasts, and sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and differentiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ-dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Notch1 proteins are involved in binary cell fate decisions. To determine the role of Notch1 in the differentiation of CD4(+) Th1 versus Th2 cells, we have compared T helper polarization in vitro in naive CD4(+) T cells isolated from mice in which the N1 gene is specifically inactivated in all mature T cells. Following activation, Notch1-deficient CD4(+) T cells transcribed and secreted IFN-gamma under Th1 conditions and IL-4 under Th2 conditions at levels similar to that of control CD4(+) T cells. These results show that Notch1 is dispensable for the development of Th1 and Th2 phenotypes in vitro. The requirement for Notch1 in Th1 differentiation in vivo was analyzed following inoculation of Leishmania major in mice with a T cell-specific inactivation of the Notch1 gene. Following infection, these mice controlled parasite growth at the site of infection and healed their lesions. The mice developed a protective Th1 immune response characterized by high levels of IFN-gamma mRNA and protein and low levels of IL-4 mRNA with no IL-4 protein in their lymph node cells. Taken together, these results indicate that Notch1 is not critically involved in CD4(+) T helper 1 differentiation and in resolution of lesions following infection with L. major.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. RESULTS: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. CONCLUSIONS: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Recently, mesenchymal stem cells (MSC) of perivascular origin have been identified in several organs not including the heart. Using a novel cell isolation protocol, we have isolated cells sharing common characteristics from mouse hearts and pancreas. The aim of the present study was to characterize these cells in vitro.Methods: Cells were isolated from neonatal and adult mouse hearts and pancreas and cultured for more than 6 months. Surface marker expression was analyzed by flow cytometry and immunocytochemistry. Cell differentiation was tested using multiple differentiation media. Insulin production by pancreas-derived cells was tested by dithizone staining.Results: Cells showing a similar, distinctive morphology were obtained from the heart and pancreas after 4-8 weeks of culture. Cells from the two organs also showed a very similar immunophenotype, characterized by expression of c-kit (stem cell factor receptor), CD44, the common leukocyte marker CD45, and the monocytic markers CD11b and CD14. A significant proportion of cardiac and pancreatic cells expressed NG2, a marker for pericytes and other vascular cells. A significant proportion of cardiac, but not of pancreatic cells expressed stem cell antigen-1 (Sca-1). However, cells did not express T, B or dendritic cell markers. Cells of both cardiac and pancreatic origin spontaneously formed "spheres" (spherical cell aggregates similar to "neurospheres" formed by neural stem cells) in vitro. Cardiosphere formation was enhanced by TNF-alpha. Several cardiospheres (but no "pancreatospheres") derived from neonatal (but not adult) cells showed spontaneous rhythmic contractions, thus demonstrating cardiac differentiation (this was confirmed by immunostaining for alpha-sarcomeric actinin). Beating activity was enhanced by low serum conditions. Cells from both organs formed adipocytes, osteocytes and osteocytes under appropriate conditions, the typical differentiation pattern of MSCs. Pancreas-derived cells also formed dithizonepositive insulin-producing cells.Conclusions: We have defined cardiac and pancreatic cell populations that share a common morphology, growth characteristics, and a unique immunophenotype. Expression of perivascular and monocytic markers, along with stem/priogenitor cell markers by these cells suggests a relationship with pericytes-mesoangioblasts and so-called multipotent monocytes. Cells show MSC-typical growth and differentiation patterns, together with tissue-specific differentiation potential: cardiomyocytes for cardiac-derived cells and insulinproducing cells for pancreas-derived cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The biochemical development of rotation-mediated aggregating brain cell cultures was studied in a serum-free chemically defined medium in the presence (complete medium) or the absence of triiodothyronine (T3). The expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP), two myelin components, was temporally dissociated in brain cell aggregating cultures grown in a complete medium. CNP increased from day 8 and reached a plateau around day 25. MBP accumulated rapidly from the third until the fourth week in culture. The total protein content increased gradually until day 25. The activity of ornithine decarboxylase (ODC) used as an index of cell growth and differentiation, showed two well-defined peaks of activity. The first peak reached a maximum at day 6 and correlated with both the highest DNA content and the peak of [3H]-thymidine incorporation. The second peak of ODC activity (from day 19 to 35) coincided with the differentiation of oligodendrocytes. These results confirm that aggregating fetal rat brain cells cultured in a serum-free chemically defined medium undergo extensive differentiation. Addition of T3 to the culture medium doubled the CNP activity by day 16. In contrast, MBP was only slightly increased by day 16, reaching at 25 and 35 days 8 to 10-fold higher values than the untreated cultures. When T3 was removed between day 16 and 25, CNP decreased almost to control values and MBP failed to accumulate. Moreover, when T3 was reintroduced into the medium (between day 25 and 35), CNP activity was restored and MBP content was partially corrected. T3 treatment produced a concentration-dependent increase in ODC activity which was observed only around day 19. The first peak of ODC activity observed at culture day 6 was independent of the presence of T3. These results obtained in brain cell cultures emphasize the direct effect of T3 on myelination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T cell responses to viral epitopes are often composed of a small number of codominant clonotypes. In this study, we show that tumor Ag-specific T cells can behave similarly. In a melanoma patient with a long lasting HLA-A2/NY-ESO-1-specific T cell response, reaching 10% of circulating CD8 T cells, we identified nine codominant clonotypes characterized by individual TCRs. These clonotypes made up almost the entire pool of highly differentiated effector cells, but only a fraction of the small pool of less differentiated "memory" cells, suggesting that the latter serve to maintain effector cells. The different clonotypes displayed full effector function and expressed TCRs with similar functional avidity. Nevertheless, some clonotypes increased, whereas others declined in numbers over the observation period of 6 years. One clonotype disappeared from circulating blood, but without preceding critical telomere shortening. In turn, clonotypes with increasing frequency had accelerated telomere shortening, correlating with strong in vivo proliferation. Interestingly, the final prevalence of the different T cell clonotypes in circulation was anticipated in a metastatic lymph node withdrawn 2 years earlier, suggesting in vivo clonotype selection driven by metastases. Together, these data provide novel insight in long term in vivo persistence of T cell clonotypes associated with continued cell turnover but not replicative senescence or functional alteration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T cells belong to two separate lineages based on surface expression of alpha beta or gamma delta T cell receptors (TCR). Since during thymus development TCR beta, gamma, and delta genes rearrange before alpha genes, and gamma delta cells appear earlier than alpha beta cells, it has been assumed that gamma delta cells are devoid of TCR alpha rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic gamma delta cells undergo VJ alpha rearrangements more frequently than immature alpha beta lineage thymic precursors. Sequence analysis shows VJ alpha rearrangements in gamma delta cells to be mostly (70%) nonproductive. Furthermore, VJ alpha rearrangements in gamma delta cells are transcribed normally and, as shown by analysis of TCR beta-/- mice, occur independently of productive VDJ beta rearrangements. These data are interpreted in the context of a model in which precursors of alpha beta and gamma delta cells differ in their ability to express a functional pre-TCR complex.