922 resultados para Cd8 T Cell


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis is a major cause of death due to an infection in mankind. BCG vaccine protects against childhood tuberculosis although, it fails to protect against adult tuberculosis. BCG vaccine localizes to immature phagosomes of macrophages, and avoids lysosomal fusion, which decreases peptide antigen production. Peptides are essential for macrophage-mediated priming of CD4 and CD8 T cells respectively through MHC-II and MHC-I pathways. Furthermore, BCG reduces the expression of MHC-II in macrophages of mice after infection, through Toll-like receptor-1/2 (TLR-1/2) mediated signaling. In my first aim, I hypothesized that BCG-induced reduction of MHC-II levels in macrophages can decrease CD4 T cell function, while activation of other surface Toll-like receptors (TLR) can enhance CD4 T cell function. An in vitro antigen presentation model was used where, TLR activated macrophages presented an epitope of Ag85B, a major immunogen of BCG to CD4 T cells, and T cell derived IL-2 was quantitated as a measure of antigen presentation. Macrophages with BCG were poor presenters of Ag85B while, TLR-7/9/5/4 and 1/2 activation led to an enhanced antigen presentation. Furthermore, TLR-7/9 activation was found to down-regulate the degradation of MHC-II through ubiquitin ligase MARCH1, and also stimulate MHC-II expression through activation of AP-1 and CREB transcription elements via p38 and ERK1/2 MAP kinases. I conclude from Aim-I studies that TLR-7/9 ligands can be used as more effective ‘adjuvants’ for BCG vaccine. In Aim-II, I evaluated the poor CD8 T cell function in BCG vaccinated mice thought to be due to a decreased leak of antigens into cytosol from immature phagosomes, which reduces the MHC-I mediated activation of CD8 T cells. I hypothesized that rapamycin co-treatment could boost CD8 T cell function since it was known to sort BCG vaccine into lysosomes increasing peptide generation, and it also enhanced the longevity of CD8 T cells. Since CD8 T cell function is a dynamic event better measurable in vivo, mice were given BCG vaccine with or without rapamycin injections and challenged with virulent Mycobacterium tuberculosis. Organs were analysed for tetramer or surface marker stained CD8 T cells using flow cytometry, and bacterial counts of organisms for evaluation of BCG-induced protection. Co-administration of rapamycin with BCG significantly increased the numbers of CD8 T cells in mice which developed into both short living effector- SLEC type of CD8 T cells, and memory precursor effector-MPEC type of longer-living CD8 T cells. Increased levels of tetramer specific-CD8 T cells correlated with a better protection against tuberculosis in rapamycin-BCG group compared to BCG vaccinated mice. When rapamycin-BCG mice were rested and re-challenged with M.tuberculosis, MPECs underwent stronger recall expansion and protected better against re-infection than mice vaccinated with BCG alone. Since BCG induced immunity wanes with time in humans, we made two novel observations in this study that adjuvant activation of BCG vaccine and rapamycin co-treatment both lead to a stronger and longer vaccine-mediated immunity to tuberculosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To enhance the efficacy of DNA malaria vaccines, we evaluated the effect on protection of immunizing with various combinations of DNA, recombinant vaccinia virus, and a synthetic peptide. Immunization of BALB/c mice with a plasmid expressing Plasmodium yoelii (Py) circumsporozoite protein (CSP) induces H-2Kd-restricted CD8+ cytotoxic T lymphocyte (CTL) responses and CD8+ T cell- and interferon (IFN)-γ-dependent protection of mice against challenge with Py sporozoites. Immunization with a multiple antigenic peptide, including the only reported H-2Kd-restricted CD8+ T cell epitope on the PyCSP (PyCSP CTL multiple antigenic peptide) and immunization with recombinant vaccinia expressing the PyCSP induced CTL but only modest to minimal protection. Mice were immunized with PyCSP DNA, PyCSP CTL multiple antigenic peptide, or recombinant vaccinia expressing PyCSP, were boosted 9 wk later with the same immunogen or one of the others, and were challenged. Only mice immunized with DNA and boosted with vaccinia PyCSP (D-V) (11/16: 69%) or DNA (D-D) (7/16: 44%) had greater protection (P < 0.0007) than controls. D-V mice had significantly higher individual levels of antibodies and class I-restricted CTL activity than did D-D mice; IFN-γ production by ELIspot also was higher in D-V than in D-D mice. In a second experiment, three different groups of D-V mice each had higher levels of protection than did D-D mice, and IFN-γ production was significantly greater in D-V than in D-D mice. The observation that priming with PyCSP DNA and boosting with vaccinia-PyCSP is more immunogenic and protective than immunizing with PyCSP DNA alone supports consideration of a similar sequential immunization approach in humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To develop a strategy that promotes efficient antiviral immunity, hybrid virus-like particles (VLP) were prepared by self-assembly of the modified porcine parvovirus VP2 capsid protein carrying a CD8+ T cell epitope from the lymphocytic choriomeningitis virus nucleoprotein. Immunization of mice with these hybrid pseudoparticles, without adjuvant, induced strong cytotoxic T lymphocyte (CTL) responses against both peptide-coated- or virus-infected-target cells. This CD8+ class I-restricted cytotoxic activity persisted in vivo for at least 9 months. Furthermore, the hybrid parvovirus-like particles were able to induce a complete protection of mice against a lethal lymphocytic choriomeningitis virus infection. To our knowledge, this study represents the first demonstration that hybrid nonreplicative VLP carrying a single viral CTL epitope can induce protection against a viral lethal challenge, in the absence of any adjuvant. These recombinant particles containing a single type of protein are easily produced by the baculovirus expression system and, therefore, represent a promising and safe strategy to induce strong CTL responses for the elimination of virus-infected cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here that a cancer gene therapy protocol using a combination of IL-12, pro-IL-18, and IL-1β converting enzyme (ICE) cDNA expression vectors simultaneously delivered via gene gun can significantly augment antitumor effects, evidently by generating increased levels of bioactive IL-18 and consequently IFN-γ. First, we compared the levels of IFN-γ secreted by mouse splenocytes stimulated with tumor cells transfected with various test genes, including IL-12 alone; pro-IL-18 alone; pro-IL-18 and ICE; IL-12 and pro-IL-18; and IL-12, pro-IL-18, and ICE. Among these treatments, the combination of IL-12, pro-IL-18, and ICE cDNA resulted in the highest level of IFN-γ production from splenocytes in vitro, and similar results were obtained when these same treatments were delivered to the skin of a mouse by gene gun and IFN-γ levels were measured at the skin transfection site in vivo. Furthermore, the triple gene combinatorial gene therapy protocol was the most effective among all tested groups at suppressing the growth of TS/A (murine mammary adenocarcinoma) tumors previously implanted intradermally at the skin site receiving DNA transfer by gene gun on days 6, 8, 10, and 12 after tumor implantation. Fifty percent of mice treated with the combined three-gene protocol underwent complete tumor regression. In vivo depletion experiments showed that this antitumor effect was CD8+ T cell-mediated and partially IFN-γ-dependent. These results suggest that a combinatorial gene therapy protocol using a mixture of IL-12, pro-IL-18, and ICE cDNAs can confer potent antitumor activities against established TS/A tumors via cytotoxic CD8+ T cells and IFN-γ-dependent pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immunodeficiency typically appears many years after initial HIV infection. This long, essentially asymptomatic period contributes to the transmission of HIV in human populations. In rare instances, clearance of HIV-1 infection has been observed, particularly in infants. There are also reports of individuals who have been frequently exposed to HIV-1 but remain seronegative for the virus, and it has been hypothesized that these individuals are resistant to infection by HIV-1. However, little is known about the mechanism of immune clearance or protection against HIV-1 in these high-risk individuals because it is difficult to directly demonstrate in vivo protective immunity. Although most of these high-risk individuals show an HIV-1-specific cell-mediated immune response using in vitro assays, their peripheral blood lymphocytes (PBLs) are still susceptible to HIV infection in tissue culture. To study this further in vivo, we have established a humanized SCID mouse infection model whereby T-, B-, and natural killer-cell defective SCID/beige mice that have been reconstituted with normal human PBLs can be infected with HIV-1. When the SCID/beige mice were reconstituted with PBLs from two different multiply exposed HIV-1 seronegative individuals, the mice showed resistance to infection by two strains of HIV-1 (macrophage tropic and T cell tropic), although the same PBLs were easily infected in vitro. Mice reconstituted with PBLs from non-HIV-exposed controls were readily infected. When the same reconstituted mice were depleted of human CD8 T cells, however, they became susceptible to HIV-1 infection, indicating that the in vivo protection required CD8 T cells. This provides clear experimental evidence that some multiply exposed, HIV-1-negative individuals have in vivo protective immunity that is CD8 T cell-dependent. Understanding the mechanism of such protective immunity is critical to the design and testing of effective prophylactic vaccines and immunotherapeutic regimens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compared peripheral and mucosal primary CD8 T cell responses to inflammatory and noninflammatory forms of antigen in a T cell-adoptive transfer system. Immunization with the soluble antigen, ovalbumin (ova), administered i.p. or orally without adjuvant, activated nonmucosal CD8 T cells but did not induce cytotoxic activity. However, after activation, the transferred cells entered the intestinal mucosa and became potent antigen-specific killers. Thus, exogenous intact soluble protein entered the major histocompatibility complex class I antigen presentation pathway and induced mucosal cytotoxic T lymphocytes. Moreover, distinct costimulatory requirements for activation of peripheral versus mucosal T cells were noted in that the CD28 ligand, B7-1, was critical for activated mucosal T cell generation but not for activation of peripheral CD8 T cells. The costimulator, B7-2, was required for optimum activation of both populations. Infection with a new recombinant vesicular stomatitis virus encoding ovalbumin induced lytic activity in mucosal as well as peripheral sites, demonstrating an adjuvant effect of inflammatory mediators produced during virus infection. Generation of antiviral cytotoxic T lymphocytes was also costimulation-dependent. The results indicated that induction of peripheral tolerance via antigen administration may not extend to mucosal sites because of distinct costimulatory and inflammatory signals in the mucosa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The HIV-1 regulatory proteins Rev and Tat are expressed early in the virus life cycle and thus may be important targets for the immune control of HIV-1-infection and for effective vaccines. However, the extent to which these proteins are targeted in natural HIV-1 infection as well as precise epitopes targeted by human cytotoxic T lymphocytes (CTL) remain to be defined. In the present study, 57 HIV-1-infected individuals were screened for responses against Tat and Rev by using overlapping peptides spanning the entire Tat and Rev proteins. CD8+ T cell responses against Tat and Rev were found in up to 19 and 37% of HIV-1-infected individuals, respectively, indicating that these regulatory proteins are important targets for HIV-1-specific CTL. Despite the small size of these proteins, multiple CTL epitopes were identified in each. These data indicate that Tat and Rev are frequently targeted by CTL in natural HIV-1 infection and may be important targets for HIV vaccines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particle-mediated (gene gun) in vivo delivery of the murine interleukin 12 (IL-12) gene in an expression plasmid was evaluated for antitumor activity. Transfer of IL-12 cDNA into epidermal cells overlying an implanted intradermal tumor resulted in detectable levels (266.0 +/- 27.8 pg) of the transgenic protein at the skin tissue treatment site. Despite these low levels of transgenic IL-12, complete regression of established tumors (0.4-0.8 cm in diameter) was achieved in mice bearing Renca, MethA, SA-1, or L5178Y syngeneic tumors. Only one to four treatments with IL-12 cDNA-coated particles, starting on day 7 after tumor cell implantation, were required to achieve complete tumor regression. This antitumor effect was CD8+ T cell-dependent and led to the generation of tumor-specific immunological memory. By using a metastatic P815 tumor model, we further showed that a delivery of IL-12 cDNA into the skin overlying an advanced intradermal tumor, followed by tumor excision and three additional IL-12 gene transfections, could significantly inhibit systemic metastases, resulting in extended survival of test mice. These results suggest that gene gun-mediated in vivo delivery of IL-12 cDNA should be further developed for potential clinical testing as an approach for human cancer gene therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUMMARY The Porcine Reproductive and Respiratory Syndrome (PRRS) virus is one of the most spread pathogens in swine herds all over the world and responsible for a reproductive and respiratory syndrome that causes severe heath and economical problems. This virus emerged in late 1980’s but although about 30 years have passed by, the knowledge about some essential facets related to the features of the virus (pathogenesis, immune response, and epidemiology) seems to be still incomplete. Taking into account that the development of modern vaccines is based on how innate and acquire immunity react, a more and more thorough knowledge on the immune system is needed, in terms of molecular modulation/regulation of the inflammatory and immune response upon PRRSV infection. The present doctoral thesis, which is divided into 3 different studies, is aimed to increase the knowledge about the interaction between the immune system and the PRRS virus upon natural infection. The objective of the first study entitled “Coordinated immune response of memory and cytotoxic T cells together with IFN-γ secreting cells after porcine reproductive and respiratory syndrome virus (PRRSV) natural infection in conventional pigs” was to evaluate the activation and modulation of the immune response in pigs naturally infected by PRRSV compared to an uninfected control group. The course of viremia was evaluated by PCR, the antibody titres by ELISA, the number of IFN-γ secreting cells (IFN- SC) by an ELISPOT assay and the immunophenotyping of some lymphocyte subsets (cytotoxic cells, memory T lymphocytes and cytotoxic T lymphocytes) by flow cytometry. The results showed that the activation of the cell-mediated immune response against PRRSV is delayed upon infection and that however the levels of IFN-γ SC and lymphocyte subsets subsequently increase over time. Furthermore, it was observed that the course of the different immune cell subsets is time-associated with the levels of PRRSV-specific IFN-γ SC and this can be interpreted based on the functional role that such lymphocyte subsets could have in the specific production/secretion of the immunostimulatory cytokine IFN-γ. In addition, these data support the hypothesis that the age of the animals upon the onset of infection or the diverse immunobiological features of the field isolate, as typically hypothesized during PRRSV infection, are critical conditions able to influence the qualitative and quantitative course of the cell-mediated immune response during PRRSV natural infection. The second study entitled “Immune response to PCV2 vaccination in PRRSV viremic piglets” was aimed to evaluate whether PRRSV could interfere with the activation of the immune response to PCV2 vaccination in pigs. In this trial, 200 pigs were divided into 2 groups: PCV2-vaccinated (at 4 weeks of age) and PCV2-unvaccinated (control group). Some piglets of both groups got infected by PRRSV, as determined by PRRSV viremia detection, so that 4 groups were defined as follows: PCV2 vaccinated - PRRSV viremic PCV2 vaccinated - PRRSV non viremic PCV2 unvaccinated - PRRSV viremic PCV2 unvaccinated - PRRSV non viremic The following parameters were evaluated in the 4 groups: number of PCV2-specific IFN-γ secreting cells, antibody titres by ELISA and IPMA. Based on the immunological data analysis, it can be deduced that: 1) The low levels of antibodies against PCV2 in the PCV2-vaccinated – PRRSV-viremic group at vaccination (4 weeks of age) could be related to a reduced colostrum intake influenced by PRRSV viremia. 2) Independently of the viremia status, serological data of the PCV2-vaccinated group by ELISA and IPMA does not show statistically different differences. Consequently, it can be be stated that, under the conditions of the study, PRRSV does not interfere with the antibody response induced by the PCV2 vaccine. 3) The cell-mediated immune response in terms of number of PCV2-specific IFN-γ secreting cells in the PCV2-vaccinated – PRRSV-viremic group seems to be compromised, as demonstrated by the reduction of the number of IFN-γ secreting cells after PCV2 vaccination, compared to the PCV2-vaccinated – PRRSV-non-viremic group. The data highlight and further support the inhibitory role of PRRSV on the development and activation of the immune response and highlight how a natural infection at early age can negatively influence the immune response to other pathogens/antigens. The third study entitled “Phenotypic modulation of porcine CD14+ monocytes, natural killer/natural killer T cells and CD8αβ+ T cell subsets by an antibody-derived killer peptide (KP)” was aimed to determine whether and how the killer peptide (KP) could modulate the immune response in terms of activation of specific lymphocyte subsets. This is a preliminary approach also aimed to subsequently evaluate such KP with a potential antivural role or as adjuvant. In this work, pig peripheral blood mononuclear cells (PBMC) were stimulated with three KP concentrations (10, 20 and 40 g/ml) for three time points (24, 48 and 72 hours). TIME POINTS (hours) KP CONCENTRATIONS (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 By using flow cytometry, the qualitative and quantitative modulation of the following immune subsets was evaluated upon KP stimulation: monocytes, natural killer (NK) cells, natural killer T (NKT) cells, and CD4+ and CD8α/β+ T lymphocyte subsets. Based on the data, it can be deduced that: 1) KP promotes a dose-dependent activation of monocytes, particularly after 24 hours of stimulation, by inducing a monocyte phenotypic and maturation shift mainly involved in sustaining the innate/inflammatory response. 2) KP induces a strong dose-dependent modulation of NK and NKT cells, characterized by an intense increase of the NKT cell fraction compared to NK cells, both subsets involved in the antibody-dependent cell cytotoxicity (ADCC). The increase is observed especially after 24 hours of stimulation. 3) KP promotes a significant activation of the cytotoxic T lymphocyte subset (CTL). 4) KP can modulate both the T helper and T cytotoxic phenotype, by inducing T helper cells to acquire the CD8α thus becoming doube positive cells (CD4+CD8+) and by inducing CTL (CD4-CD8+high) to acquire the double positive phenotype (CD4+CD8α+high). Therefore, KP may induce several effects on different immune cell subsets. For this reason, further research is needed aimed at characterizing each “effect” of KP and thus identifying the best use of the decapeptide for vaccination practice, therapeutic purposes or as vaccine adjuvant. RIASSUNTO Il virus della PRRS (Porcine Reproductive Respiratory Syndrome) è uno dei più diffusi agenti patogeni negli allevamenti suini di tutto il mondo, responsabile di una sindrome riproduttiva e respiratoria causa di gravi danni ad impatto sanitario ed economico. Questo virus è emerso attorno alla fine degli anni ’80 ma nonostante siano passati circa una trentina di anni, le conoscenze su alcuni punti essenziali che riguardano le caratteristiche del virus (patogenesi, risposta immunitaria, epidemiologia) appaiono ancora spesso incomplete. Considerando che lo sviluppo dei vaccini moderni è basato sui principi dell’immunità innata e acquisita è essenziale una sempre più completa conoscenza del sistema immunitario inteso come modulazione/regolazione molecolare della risposta infiammatoria e immunitaria in corso di tale infezione. Questo lavoro di tesi, suddiviso in tre diversi studi, ha l’intento di contribuire all’aumento delle informazioni riguardo l’interazione del sistema immunitario, con il virus della PRRS in condizioni di infezione naturale. L’obbiettivo del primo studio, intitolato “Associazione di cellule memoria, cellule citotossiche e cellule secernenti IFN- nella risposta immunitaria in corso di infezione naturale da Virus della Sindrome Riproduttiva e Respiratoria del Suino (PRRSV)” è stato di valutare l’attivazione e la modulazione della risposta immunitaria in suini naturalmente infetti da PRRSV rispetto ad un gruppo controllo non infetto. I parametri valutati sono stati la viremia mediante PCR, il titolo anticorpale mediante ELISA, il numero di cellule secernenti IFN- (IFN- SC) mediante tecnica ELISPOT e la fenotipizzazione di alcune sottopopolazioni linfocitarie (Cellule citotossiche, linfociti T memoria e linfociti T citotossici) mediante citofluorimetria a flusso. Dai risultati ottenuti è stato possibile osservare che l’attivazione della risposta immunitaria cellulo-mediata verso PRRSV appare ritardata durante l’infezione e che l’andamento, in termini di IFN- SC e dei cambiamenti delle sottopopolazioni linfocitarie, mostra comunque degli incrementi seppur successivi nel tempo. E’ stato inoltre osservato che gli andamenti delle diverse sottopopolazioni immunitarie cellulari appaiono temporalmente associati ai livelli di IFN- SC PRRSV-specifiche e ciò potrebbe essere interpretato sulla base del ruolo funzionale che tali sottopopolazioni linfocitarie potrebbero avere nella produzione/secrezione specifica della citochina immunoattivatrice IFN-. Questi dati inoltre supportano l’ipotesi che l’età degli animali alla comparsa dell’infezione o, come tipicamente ipotizzato nell’infezione da PRRSV, le differenti caratteristiche immunobiologiche dell’isolato di campo, sia condizioni critiche nell’ influenzare l’andamento qualitativo e quantitativo della risposta cellulo-mediata durante l’infezione naturale da PRRSV. Il secondo studio, dal titolo “Valutazione della risposta immunitaria nei confronti di una vaccinazione contro PCV2 in suini riscontrati PRRSV viremici e non viremici alla vaccinazione” ha avuto lo scopo di valutare se il virus della PRRS potesse andare ad interferire sull’attivazione della risposta immunitaria indotta da vaccinazione contro PCV2 nel suino. In questo lavoro sono stati arruolati 200 animali divisi in due gruppi, PCV2 Vaccinato (a 4 settimane di età) e PCV2 Non Vaccinato (controllo negativo). Alcuni suinetti di entrambi i gruppi, si sono naturalmente infettati con PRRSV, come determinato con l’analisi della viremia da PRRSV, per cui è stato possibile creare quattro sottogruppi, rispettivamente: PCV2 vaccinato - PRRSV viremico PCV2 vaccinato - PRRSV non viremico PCV2 non vaccinato - PRRSV viremico PCV2 non vaccinato - PRRSV non viremico Su questi quattro sottogruppi sono stati valutati i seguenti parametri: numero di cellule secernenti IFN- PCV2 specifiche, ed i titoli anticorpali mediante tecniche ELISA ed IPMA. Dall’analisi dei dati immunologici derivati dalle suddette tecniche è stato possibile dedurre che:  I bassi valori anticorpali nei confronti di PCV2 del gruppo Vaccinato PCV2-PRRSV viremico già al periodo della vaccinazione (4 settimane di età) potrebbero essere messi in relazione ad una ridotta assunzione di colostro legata allo stato di viremia da PRRSV  Indipendentemente dallo stato viremico, i dati sierologici del gruppo vaccinato PCV2 provenienti sia da ELISA sia da IPMA non mostrano differenze statisticamente significative. Di conseguenza è possibile affermare che in questo caso PRRSV non interferisce con la risposta anticorpale promossa dal vaccino PCV2.  La risposta immunitaria cellulo-mediata, intesa come numero di cellule secernenti IFN- PCV2 specifiche nel gruppo PCV2 vaccinato PRRS viremico sembra essere compromessa, come viene infatti dimostrato dalla diminuzione del numero di cellule secernenti IFN- dopo la vaccinazione contro PCV2, comparata con il gruppo PCV2 vaccinato- non viremico. I dati evidenziano ed ulteriormente sostengono il ruolo inibitorio del virus della PRRSV sullo sviluppo ed attivazione della risposta immunitaria e come un infezione naturale ad età precoci possa influenzare negativamente la risposta immunitaria ad altri patogeni/antigeni. Il terzo studio, intitolato “Modulazione fenotipica di: monociti CD14+, cellule natural killer (NK), T natural killer (NKT) e sottopopolazioni linfocitarie T CD4+ e CD8+ durante stimolazione con killer peptide (KP) nella specie suina” ha avuto come scopo quello di stabilire se e come il Peptide Killer (KP) potesse modulare la risposta immunitaria in termini di attivazione di specifiche sottopopolazioni linfocitarie. Si tratta di un approccio preliminare anche ai fini di successivamente valutare tale KP in un potenziale ruolo antivirale o come adiuvante. In questo lavoro, periferal blood mononuclear cells (PBMC) suine sono state stimolate con KP a tre diverse concentrazioni (10, 20 e 40 g/ml) per tre diversi tempi (24, 48 e 72 ore). TEMPI DI STIMOLAZIONE (ore) CONCENTRAZIONE DI KP (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 Mediante la citometria a flusso è stato dunque possibile analizzare il comportamento qualitativo e quantitativo di alcune sottopopolazioni linfocitarie sotto lo stimolo del KP, tra cui: monociti, cellule Natural Killer (NK), cellule T Natural Killer (NKT) e linfociti T CD4 e CD8+. Dai dati ottenuti è stato possibile dedurre che: 1) KP promuove un’attivazione dei monociti dose-dipendente in particolare dopo 24 ore di stimolazione, inducendo uno “shift” fenotipico e di maturazione monocitaria maggiormente coinvolto nel sostegno della risposta innata/infiammatoria. 2) KP induce una forte modulazione dose-dipendente di cellule NK e NKT con un forte aumento della frazione delle cellule NKT rispetto alle NK, sottopopolazioni entrambe coinvolte nella citotossicità cellulare mediata da anticorpi (ADCC). L’aumento è riscontrabile soprattutto dopo 24 ore di stimolazione. 3) KP promuove una significativa attivazione della sottopopolazione del linfociti T citotossici (CTL). 4) Per quanto riguarda la marcatura CD4+/CD8+ è stato dimostrato che KP ha la capacità di modulare sia il fenotipo T helper che T citotossico, inducendo le cellule T helper ad acquisire CD8 diventando quindi doppio positive (CD4+CD8+) ed inducendo il fenotipo CTL (CD4-CD8+high) ad acquisire il fenotipo doppio positivo (CD4+CD8α+high). Molti dunque potrebbero essere gli effetti che il decapeptide KP potrebbe esercitare sulle diverse sottopopolazioni del sistema immunitario, per questo motivo va evidenziata la necessità di impostare e attuare nuove ricerche che portino alla caratterizzazione di ciascuna “abilità” di KP e che conducano successivamente alla scoperta del migliore utilizzo che si possa fare del decapeptide sia dal punto di vista vaccinale, terapeutico oppure sotto forma di adiuvante vaccinale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUÇÃO: Líquen plano (LP) é uma doença mucocutânea de natureza inflamatória crônica de etiologia ainda desconhecida. A estimulação da imunidade inata via os receptores Toll-like (TLRs) podem influenciar as células dendríticas e direcionar a resposta de células T CD4+ e CD8+ efetoras, assim como também favorecer o estado inflamatório do LP. OBJETIVOS: Avaliar o perfil fenotípico de células dendríticas mielóides (mDCs) e plasmocitóides (pDCs) e de linfócitos T CD4+ e CD8+ após estímulo com agonistas de TLRs no sangue periférico de pacientes com LP. Além disto, avaliar a frequência, perfil de maturação e os subtipos de células T CD4+ e TCD8+ reguladores. MÉTODOS: Foram selecionados 18 pacientes com LP (15 mulheres, 3 homens), com 41,57 ± 4,73 anos de idade e um grupo controle com 22 indivíduos sadios (18 mulheres, 4 homens), com 43,92 ± 7,83 anos de idade. As células mononucleares (CMNs) de sangue periférico foram avaliadas por citometria de fluxo quanto à: 1) Produção de TNF-? em mDCs e de IFN-? em pDCs em CMNs ativadas por agonistas de TLR 4, 7, 7/8 e 9; 2) Análise de células T CD4+ e CD8+ monofuncionais e polifuncionais após estímulo com agonistas de TLR 4, 7/8, 9 e enterotoxina B de Staphylococcus aureus (SEB); 3) Avaliação de células Th17 e Th22/Tc22 em CMNs após estímulo com SEB; 4) Frequência, perfil de maturação e subtipos de células T CD4+ e CD8+ reguladoras. RESULTADOS: 1) Nos pacientes com LP foi demonstrado um aumento na frequência de mDCs TNF-alfa+ após estímulo com agonistas de TLR4/LPS e TLR7-8/CL097, mas com imiquimode/TLR7 houve diminuição da expressão de CD83. Já nas pDCs do grupo LP, o imiquimode foi capaz de diminuir a expressão de CD80 e o CpG/TLR9 diminuiu a expressão de CD83 no LP. 2) As células T CD4+ secretoras de IL-10 mostraram aumento da frequência nos níveis basais, que diminuiu após estímulo com LPS e SEB. Em contraste, a produção de IFN-y aumentou em resposta ao LPS enquanto diminuiu para CpG. As células T CD4+ polifuncionais, secretoras de 5 citocinas simultâneas (CD4+IL-17+IL-22+TNF+IL-10+IFN-y+) diminuíram no LP após estímulo com CL097 e CpG. Entretanto, na ausência de IL-10, houve aumento da frequência de células CD4+IL-17+IL-22+TNF+IFN-y+ em resposta ao LPS. Um aumento na polifuncionalidade foi observado em células TCD4+ que expressam CD38, marcador de ativação crônica e na ausência de IL-10. Similarmente, às TCD4+, uma diminuição de células T CD8+ IFN-y+ e TNF+ foram detectadas após estímulo com CpG. 3) As células Th22/Tc22 nos níveis basais e após estímulo com SEB se mostraram aumentadas. As células Th17 não mostraram diferenças entre os grupos. 4) A frequência das células T CD4+ e CD8+ reg totais (CD25+Foxp3+CD127low/-) está elevada no LP. Quanto aos perfis de maturação, há aumento na frequência de células TCD4+ de memória efetora enquanto que para as células T CD8+ há predomínio das células de memória central. Quanto aos subtipos, há aumento nas células T CD4+ regs periféricas (pT reg). CONCLUSÕES: O estado de ativação das mDCs após ativação das vias de TLRs 4 e 7/8 pode influenciar na geração de resposta T efetoras no LP. O perfil de resposta monofuncional e polifuncional aos estímulos TLRs reflete a ativação destas células no sangue periférico. Além disso, o aumento de Th22/Tc22 e das células T regs indicam uma relação entre regulação e células efetoras no sangue periférico evidenciando que existem alterações extracutâneas no LP

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adenylate cyclase toxoid (ACT) of Bordetella pertussis is capable of delivering its N-terminal catalytic domain into the cytosol of CD11b-expressing professional antigen-presenting cells such as myeloid dendritic cells. This allows delivery of CD8+ T-cell epitopes to the major histocompatibility complex (MHC) class I presentation pathway. Recombinant detoxified ACT containing an epitope of the Plasmodium berghei circumsporozoite protein (CSP), indeed, induced a specific CD8+ T-cell response in immunized mice after a single application, as detected by MHC multimer staining and gamma interferon (IFN-gamma) ELISPOT assay. This CSP-specific response could be significantly enhanced by prime-boost immunization with recombinant ACT in combination with anti-CTLA-4 during the boost immunization. This increased response was accompanied by complete protection in a number of mice after a challenge with P. berghei sporozoites. Transient blockade of CTLA-4 may overcome negative regulation and hence provide a strategy to enhance the efficacy of a vaccine by amplifying the number of responding T cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous cancer vaccination trials often aimed to activate CD8(+) cytotoxic T-cell (CTL) responses with short (8-10mer) peptides and targeted CD4(+) helper T cells (TH) with HLA class II-binding longer peptides (12-16 mer) that were derived from tumor antigens. Accordingly, a study of immunomonitoring focused on the detection of CTL responses to the short, and TH responses to the long, peptides. The possible induction of concurrent TH responses to short peptides was widely neglected. In a recent phase I vaccination trial, 53 patients with different solid cancers were vaccinated with EMD640744, a cocktail of five survivin-derived short (9- or 10-mer) peptides in Montanide ISA 51VG. We monitored 49 patients and found strong CD8(+) T-cell responses in 63% of the patients. In addition, we unexpectedly found CD4(+) TH cell responses against at least two of the five short peptides in 61% (23/38) of the patients analyzed. The two peptides were recognized by HLA-DP4- and HLA-DR-restricted TH1 cells. Some short peptide-reactive (sp)CD4 T cells showed high functional avidity. Here, we show that a short peptide vaccine is able to activate a specific CD4(+) T-cell repertoire in many patients, facilitating a strong combined CD4(+)/CD8(+) T-cell response. Cancer Immunol Res; 4(1); 18-25. ©2015 AACR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Persistent infection of cervical epithelium with high risk human papillomavirus (HPV) results in cervical intraepithelial neoplasia (CIN) from which squamous cancer of the cervix can arise. A study was undertaken to evaluate the safety and immunogenicity of an HPV 16 immunotherapeutic consisting of a mixture of HPV16 E6E7 fusion protein and ISCOMATRIX(TM) adjuvant (HPV16 Immunotherapeutic) for patients with CIN. Experimental design: Patients with CIN (n = 3 1) were recruited to a randomised blinded placebo controlled dose ranging study of immunotherapy. Results: Immunotherapy was well tolerated. Immunised subjects developed HPV16 E6E7 specific immunity. Antibody, delayed type hypersensitivity, in vitro cytokine release, and CD8 T cell responses to E6 and E7 proteins were each significantly greater in the immunised subjects than in placebo recipients. Loss of HPV16 DNA from the cervix was observed in some vaccine and placebo recipients. Conclusions : The HPV16 Immunotherapeutic comprising HPV16E6E7 fusion protein and ISCOMATRIX(TM) adjuvant is safe and induces vaccine antigen specific cell mediated immunity. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RNA replicons offer a number of qualities which make them attractive as vaccination vectors. Both alphavirus and flavivirus replicon vaccines have been investigated in preclinical models yet there has been little direct comparison of the two vector systems. To determine whether differences in the biology of the two vectors influence immunogenicity, we compared two prototypic replicon vectors based on Semliki Forest virus (SFV) (alphavirus) and Kunjin virus (KUN) (flavivirus). Both vectors when delivered as naked RNAs elicited comparable CD8+ T cell responses but the SFV vectors elicited greater humoral responses to an encoded cytoplasmic antigen beta-galactosidase. Studies in MHC class II-deficient mice revealed that neither vector could overcome the dependence of CD4+ T cell help in the development of humoral and cellular responses following immunization. These studies indicate that the distinct biology of the two replicon systems may differentially impact the adaptive immune response and this may need to be considered when designing vaccination strategies. (c) 2005 Elsevier Ltd. All rights reserved.