940 resultados para Catheter Ablation
Resumo:
Langerhans cells (LC) are the principal dendritic cell (DC) population in the epidermis of the skin. Owing to their prominent position at the environmental barrier, LC have long been considered to be prototypic sentinel DC. More recently, the precise role of LC in the initiation and control of cutaneous immune responses has become debatable. To elucidate their contribution to immune regulation in the skin, our laboratories have generated genetically modified mice in which LC can be followed in situ by expression of enhanced green fluorescent protein and can be either inducibly or constitutively depleted in vivo. This review highlights the similarities and differences between these mouse models, discusses the discovery and functional significance of Langerin(+) dermal DC, and examines some recent data that help to shed light on LC function.
Resumo:
The aim of the present study was to describe the practice of central venous catheter (CVC) removal and outcomes of catheter-related bloodstream infection (CR-BSI) in adult haematology patients. Patients were identified retrospectively according to diagnosis coding of inpatient episodes and evaluated when, on examination of medical records, there had been evidence of sepsis with strong clinical suspicion that the source was the CVC. Demographic and bacteriological data, as well as therapeutic measures and clinical outcomes, were recorded. One hundred and three patient episodes were evaluated. The most frequent type of CVC was the Hickman catheter and the most frequently isolated pathogen was coagulase-negative staphylococci. Twenty-five percent of episodes were managed with catheter removal. Treatment failure, defined as recurrence of infection within 90 days or mortality attributed to sepsis within 30 days, occurred significantly more frequently in the group managed without catheter removal (52.5% versus 4%, P
Resumo:
Surface modification of thin aluminium films is both produced and characterised by exciting surface plasmon polaritons in an attenuated total reflection geometry: silica prism/aluminium/aluminium oxide system. The modification is performed, under ambient conditions, by exposure to a low fluence (
Resumo:
Thin, oxidised Al films grown an one face of fused silica prisms are exposed. tinder ambient conditions, to single shots from an excimer laser operating at wavelength 248 nm. Preliminary characterisation of the films using attenuated total reflection yields optical and thickness data for the Al and Al oxide layers; this step facilitates the subsequent, accurate tuning of the excimer laser pulse to the: surface plasmon resonance at the Al/(oxide)/air interface and the calculation of the fluence actually absorbed by the thin film system. Ablation damage is characterised using scanning electron, and atomic force microscopy. When the laser pulse is incident, through the prism on the sample at less than critical angle, the damage features are molten in nature with small islands of sub-micrometer dimension much in evidence, a mechanism of film melt-through and subsegment blow-off due to the build up of vapour pressure at the substrate/film interface is appropriate. By contrast, when the optical input is surface plasmon mediated, predominately mechanical damage results with the film fragmenting into large flakes of dimensions on the order of 10 mu m. It is suggested that the ability of surface plasmons to transport energy leads to enhanced, preferential absorption of energy at defect sites causing stress throughout the film which exceeds the ultimate tensile stress for the film: this in turn leads to film break-up before melting can onset. (C) 1998 Elsevier Science B.V.
Resumo:
Surface plasmon enhancement of laser ablation of thin Al films is examined with a view to its application in metal film patterning and nano-structuring. Al films, deposited on silica prisms, are first characterized by attenuated total reflection using a broadband UV source and appropriate interference filter. The films are subsequently subjected to excimer laser radiation of wavelength 248 nm under conditions both of direct incidence from the air side of the film, and of surface plasmon excitation in which light is incident through the prism at greater than critical angle. For a given level of ablation damage in a particular film the fluence required using the surface plasmon technique is 3-5 times less than that needed when direct incidence is used. This is roughly in line with the energy absorbed in the film. From a practical standpoint it is clear that ablation of metal films can be achieved with much lower fluences than has hitherto been possible, thus reducing the requirements on laser output and relaxing the power handling constraints on any input optical elements.
Resumo:
The recent commissioning of a X-ray free-electron laser triggered an extensive research in the area of X-ray ablation of high-Z, high-density materials. Such compounds should be used to shorten an effective attenuation length for obtaining clean ablation imprints required for the focused beam analysis. Compounds of lead (Z=82) represent the materials of first choice. In this contribution, single-shot ablation thresholds are reported for PbWO4 and PbI2 exposed to ultra-short pulses of extreme ultraviolet radiation and X-rays at FLASH and LCLS facilities, respectively. Interestingly, the threshold reaches only 0.11 J/cm(2) at 1.55 nm in lead tungstate although a value of 0.4 J/cm(2) is expected according to the wavelength dependence of an attenuation length and the threshold value determined in the XUV spectral region, i.e., 79 mJ/cm(2) at a FEL wavelength of 13.5 nm. Mechanisms of ablation processes are discussed to explain this discrepancy. Lead iodide shows at 1.55 nm significantly lower ablation threshold than tungstate although an attenuation length of the radiation is in both materials quite the same. Lower thermal and radiation stability of PbI2 is responsible for this finding.
Resumo:
BACKGROUND AND PURPOSE: Accurate placement of an external ventricular drain (EVD) for the treatment of hydrocephalus is of paramount importance for its functionality and in order to minimize morbidity and complications. The aim of this study was to compare two different drain insertion assistance tools with the traditional free-hand anatomical landmark method, and to measure efficacy, safety and precision. METHODS: Ten cadaver heads were prepared by opening large bone windows centered on Kocher's points on both sides. Nineteen physicians, divided in two groups (trainees and board certified neurosurgeons) performed EVD insertions. The target for the ventricular drain tip was the ipsilateral foramen of Monro. Each participant inserted the external ventricular catheter in three different ways: 1) free-hand by anatomical landmarks, 2) neuronavigation-assisted (NN), and 3) XperCT-guided (XCT). The number of ventricular hits and dangerous trajectories; time to proceed; radiation exposure of patients and physicians; distance of the catheter tip to target and size of deviations projected in the orthogonal plans were measured and compared. RESULTS: Insertion using XCT increased the probability of ventricular puncture from 69.2 to 90.2 % (p = 0.02). Non-assisted placements were significantly less precise (catheter tip to target distance 14.3 ± 7.4 mm versus 9.6 ± 7.2 mm, p = 0.0003). The insertion time to proceed increased from 3.04 ± 2.06 min. to 7.3 ± 3.6 min. (p < 0.001). The X-ray exposure for XCT was 32.23 mSv, but could be reduced to 13.9 mSv if patients were initially imaged in the hybrid-operating suite. No supplementary radiation exposure is needed for NN if patients are imaged according to a navigation protocol initially. CONCLUSION: This ex vivo study demonstrates a significantly improved accuracy and safety using either NN or XCT-assisted methods. Therefore, efforts should be undertaken to implement these new technologies into daily clinical practice. However, the accuracy versus urgency of an EVD placement has to be balanced, as the image-guided insertion technique will implicate a longer preparation time due to a specific image acquisition and trajectory planning.
Resumo:
Alteplase has been shown to be effective in preventing central venous access clotting in patients on hemodialysis. Because of a high phosphorus content in its excipient, it can inadvertently contaminate blood samples, leading the physician in care of the patient to erroneously increase dialysis time or change diet in order to control the pseudo-hyperphosphatemia.