978 resultados para Catechol 1,2-dioxygenase
Resumo:
Venäjällä syntyi 1800-luvun lopulla taiteilijaryhmiä, joista ehkä tunnetuin on Mir iskusstva eli Taiteen maailma. Ryhmä järjesti omia näyttelyitä, koska sen nuoret jäsenet olivat vielä sen verran tuntemattomia, että heitä ei kelpuutettu isoihin näyttelyihin. Vuosisadan taitteessa erilaisille ryhmille oli luonnollista julkaista omaa lehteä. Mir iskusstva –ryhmän keulahahmoihin kuulunut A. Benua kirjoitti: 'kirjoitan, siis olen'. Ryhmän idea oli 'taide ei ole ylellisyyttä, se on kansan aikaansaannosta ja sille luotua'. Päätoimittaja Sergej Djagilevin ajatuksena oli tehdä venäläistä maalaustaidetta tunnetuksi Pariisissa. Ryhmällä olikin suuri välittävä merkitys: se vei tietoa venäläisestä taiteesta Eurooppaan ja toi eurooppalaisen taiteen osaksi venäläistä taide-elämää. Myös suomalaisen taiteen kannalta tällä ryhmällä oli merkitystä. Heidän lehdessään esiteltiin Suomen taiteen suuret nimet: Akseli Gallen-Kallela, Albert Edelfelt, Pekka Halonen, Väinö Blomstedt, Eero Järnefelt, Magnus Enckell, Ville Wallgren. Vuonna 1898 Djagilev esitteli laajasti suomalaista taidetta perustamansa lehden ensimmäisessä numerossa. Nuoret pietarilaistaiteilijat olivat ihastuksissaan erityisesti Gallen-Kallelan edustamasta romantiikasta. Suomen taide ja arkkitehtuuri olivat myöhemminkin hyvin esillä lehdessä. Vuonna 1904, joka oli lehden viimeinen ilmestymisvuosi, esiteltiin suomalaisten taiteilijoiden vuoden 1903 näyttelyä.
Resumo:
1,2-dichloro-4,5-dinitrobenzene (DCDNB) reacts with primary and secondary amines, in acetonitrile, at room temperature, to give a monosubstituted nitro product with a yield of 85 to 95%. The chloro-nitro-disubstituted product is formed with excess amine under reflux. Piperidine, pyrroline, dimethylamine and methylamine were the most reactive reagents in both mono- and disubstitution.
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
Digitoitu 13. 8. 2008.
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
We have developed an easy method for the synthesis of thirteen compounds derived from 1,2,4-triazoles through a carboxylic acid and hydrazinophthalazine reaction, with a 75-85% yield mediated by the use of agents such as 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide hydrochloride and 1-hydroxybenzotriazole. The operational simplicity of this method and the good yield of products make it valuable for the synthesis of new compounds with pharmacological activity.
Resumo:
This study describes the use of three (-)-alpha-pinene derivatives, one diol-1,2 [(-)-(1R, 2R, 3S, 5R)-2,6,6-trimethylbicyclo[3.1.1]heptane-2,3-diol 4] and two piridine-hydroxy derivatives [(+)-(1R,2S,3R,5S)-2,6,6-trimethyl-3-(2-pyridinylmethyl)bicyclo[3.1.1]heptan-3-ol 7 and (-)-(1R,2S,3R,5S)-2,6,6-trimethyl-3-[2-(2-pyridinyl) ethyl]bicyclo[3.1.1]heptan-3-ol 8]; one diol-1,3 [(-)-(1S,2R,5S)-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanol 5] derived from (+)-isopulegol 2 and one diol-1,3 [(+)-(1R,2R,5R)-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanol 6] derived from (+)-neo-isopulegol 3, as ligands in the asymmetric Reformatsky reaction. The best enantiomeric excess of beta-hydroxy ester obtained in the Reformatsky asymmetric reaction was 18% using ligand 6, and the chemical yield of the reactions was 65% on average.
Resumo:
Static electric dipole polarizabilities and first hyperpolarizabilites have been calculated for the title molecules and their 3' and 4'-nitro derivatives at ab-initio Hartree- Fock/6-31G(d, p) level. The influence of the pivotal p vacant 3A elements (B, Al or Ga) substitution on the electrical properties of these molecules is detailed. The axial vector components of the first hyperpolarizabilities β(0) of the push-pull 4'-nitro derivatives, -18.2×10-32 esu (B), -21.1×10-32 esu (Al) and -20.8×10-32 esu (Ga) are calculated to be as much as fourfold larger then that calculated for the p-nitroaniline, a reference organic molecule for comparison for this type of molecular property.
Resumo:
In this work we describe a new efficient strategy for the preparation of 1,2,4-trimethoxybenzene (3) in 56% overall yield. The compound 3 was used in a preliminary study of insect attraction by a mixture of semiochemicals called TIV, composed of indol (1), vanillin (2) and 1,2,4-trimethoxybenzene (3), in eight Mc Phail style traps installed at a domestic orchard of citric-culture, containing 120 trees not infected by plagues in Bom Jesus Farm, located next to a patch of the Atlantic Forest, at Silva Jardim, Rio de Janeiro, Brazil.
Resumo:
Invocatio: [hepreaa].
Resumo:
The Copper-catalyzed azide-alkyne cycloaddition (CuAAC), often referred to as "click" reaction, has become a very popular reaction in the last years. It affords exclusively 1,4-disubstituted 1,2,3-triazoles and has been widely used to connect readily accessible building blocks containing various functional groups. The great success of this reaction is based on the fact that it is general, virtually quantitative and very robuste. The scope of this copper-catalyzed synthesis is extraordinary and the reaction has found numerous applications in many research fields, including biological chemistry and materials science. In this review, the main chemical aspects and applications of the "click" reaction in the synthesis of 1,2,3-triazoles are presented.
Resumo:
MeOH extract from the leaves of Plectranthus barbatus Andrews (Lamiaceae), showed in vitro anti-trypanosomal activity. The bioassay-guided fractionation resulted in the isolation of a gallic acid derivative, identified as 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), after thorough NMR and MS spectral analysis. Finally, this compound was tested against trypomastigote forms of T. cruzi and displayed an EC50 value of 67 µM, at least 6.6-fold more effective than the standard drug benznidazole. This is the first occurrence of PGG in the Plectranthus genus and the first anti-parasitic activity described for PGG in the literature.
Resumo:
The B3LYP/6-31G (d) density functional theory (DFT) method was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. Heat of formation (HOF) and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo [3.1.1.1(2,4)]octane (TTTO) was investigated by calculating bond dissociation energy (BDE) at the unrestricted B3LYP/6-31G(d) level. Results showed the N-NO2 bond is a trigger bond during the thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to P2(1)/C space group, with cell parameters a = 8.239 Å, b = 8.079 Å, c = 16.860 Å, Z = 4 and r = 1.922 g cm-3. Both detonation velocity of 9.79 km s-1 and detonation pressure of 44.22 GPa performed similarly to CL-20. According to the quantitative standards of energetics and stability, TTTO essentially satisfies this requirement as a high energy density compound (HEDC).