959 resultados para Carbon oxidation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanodendritic Pd is electrodeposited on poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode. Electrodeposited Pd is non-dendritic in the absence of PEDOT. The electrooxidation of C-3-aliphatic alcohols, namely, propanol (PA), 1,2- propanediol (1, 2-PD), 1, 3-propanediol (1, 3-PD), and glycerol (GL) is studied in 1.0 M NaOH. The catalytic activity of nanodendritic Pd is greater than that of non-dendritic Pd for oxidation of the four alcohols molecules. Among those molecules the oxidation rate increases as: PA< 1, 2-PD < 1, 3-PD < GL. The cyclic voltammetric oxidation current peak appearing in the reverse direction of the sweep is greatly influenced by the nature of alcohol. The reduction of oxide film on Pd surface is attributed to affect the magnitude of backward peak current density. The amperometry and repeated cyclic voltammetry data suggest a high stability of nanodendritic Pd in alkaline medium. Glycerol is expected to be an appropriate alcohol for application as a fuel in alkaline fuel cells at nanodendritic electrodeposited Pd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous titanium oxide-carbon hybrid nanostructure (TiO2-C) with a specific surface area of 350 m(2)/g and an average pore-radius of 21 center dot 8 is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2-C supported Pt-Ru electro-catalyst (Pt-Ru/TiO2-C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2-C. TEM images reveal uniform distribution of Pt-Ru nanoparticles (d (Pt -aEuro parts per thousand Ru) = 1 center dot 5-3 center dot 5 nm) on TiO2-C. Methanol oxidation and accelerated durability studies on Pt-Ru/TiO2-C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt-Ru. DMFC employing Pt-Ru/TiO2-C as an anode catalyst delivers a peak-power density of 91 mW/cm(2) at 65 A degrees C as compared to the peak-power density of 60 mW/cm(2) obtained for the DMFC with carbon-supported Pt-Ru anode catalyst operating under similar conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium carbide (TiC) is an electrically conducting refractory interstitial compound possessing several unique properties. A cost-effective, efficient and non-Pt electrocatalyst based on TiC is explored and the multi-functionality of TiC towards various electrochemical reactions that are of significant interest in low temperature fuel cells is studied. Ameliorated activities towards oxygen reduction reaction (ORR) and borohydride oxidation are observed with TiC-carbon composites. High sensitivity and selectivity towards ORR have been demonstrated with very good methanol tolerance. The charge transfer interactions between TiC and carbon seem to play a vital role in the improved activity as compared to their individual counterparts. The present study opens up a way to realize completely Pt-free borohydride fuel cell architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrostatic discharge (ESD) investigations on the multiwalled carbon nanotubes (MWCNTs) are performed for the first time. A novel ESD failure mechanism of subsequent shell burning has been discovered. By using nanosecond pulse measurements, a new insight into metal-to-carbon nanotube (CNT) contact behavior could be achieved. Clear signature of two very different conduction mechanisms and related failure types at high current injection has been found. By determining the time to failure, an Arrhenius-like relation was extracted, which was explained by the oxidation of CNT shells. Finally, an extraordinary ESD failure current density of MWCNT of 1.2 x 10(9) A/cm(2) could be shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple yet remarkable, electrochemically activated carbon paste electrode (EACPE) was prepared by successive potential cycling of carbon paste in a 0.1 M NaOH solution and was effectively used for the simultaneous determination of catecholamines such as dopamine (DA), epinephrine (E) and Norepinephrine (NE) in presence of uric acid (UA) and ascorbic acid (AA). Taking DA as the ideal catecholamine, the electrochemical behaviors of DA, UA and AA such as scan rate and pH variation was studied by cyclic voltammetry (CV) in phosphate buffer solution (PBS, pH 7.1). This electrochemical sensor exhibited strong electrocatalytic activity towards the oxidation of a mixture of catecholamines, UA and AA with apparent reduction of overpotentials. Crider optimum conditions, limit of detection (S/N = 3) of DA, E, NE, UA and AA was found to be 0.08, 0.08, 0.07, 0.1 and 6.0 mu M, respectively by differential pulse voltammetry (DPV). The analytical performance of this modified electrode as a biosensor was also demonstrated for the determination of DA, UA and AA in dopamine injection, human urine and vitamin C tablets, respectively, in presence of other interfering substances. (C) 2015 The Electrochemical Society. All-rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a unique single-step chemical vapor deposition (CVD) route for the synthesis of composite thin films containing carbon nanotubes (CNTs). CVD was carried out in an inert ambient using only iron(III) acetylacetonate as the precursor. Depositions were conducted at 700 degrees C on stainless steel substrates in argon ambient in the absence of any reactive gases (such as oxygen, hydrogen). By changing the deposition parameters, especially the pressure in the CVD reactor, the form of carbon deposited could be changed from amorphous to carbon nanotubes, the latter resulting in Fe-Fe3O4-CNT films. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy together confirm the formation of the three-component composite and illustrate the nanoscale mixing of the components. Elemental iron formed in this process was protected from oxidation by the co-deposited carbon surrounding it. Irrespective of the substrate used, a composite coating with CNTs was formed under optimum conditions, as verified by analyses of the film formed on polycrystalline alumina and silicon substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pd2Ge nanoparticles were synthesized by superhydride reduction of K2PdCl4 and GeCl4. The syntheses were performed using a solvothermal method in the absence of surfactants, and the size of the nanoparticles was controlled by varying the reaction time. The powder X-ray diffraction (PXRD) and transmission electron microscopy data suggest that Pd2Ge nanoparticles were formed as an ordered intermetallic phase. In the crystal structure, Pd and Ge atoms occupy two different crystallographic positions with a vacancy in one of the Ge sites, which was proved by PXRD and energy-dispersive X-ray analysis. The catalyst is highly efficient for the electrochemical oxidation of ethanol and is stable up to the 250th cycle in alkaline medium. The electrochemical active surface area and current density values obtained, 1.41 cm(2) and 4.1 mA cm(-2), respectively, are superior to those of the commercial Pd on carbon. The experimentally observed data were interpreted in terms of the combined effect of adsorption energies of CH3CO and OH radical, d-band center model, and work function of the corresponding catalyst surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a facile synthesis of three-dimensional (3D) nanodendrites of Pd nanoparticles (NPs) and nitrogen-doped carbon NPs (N-CNPs) by electroless deposition of Pd2+ ions. N-CNPs being an electron-enriched material act as a reducing agent. Moreover, the availability of a variety of nitrogen species in N-CNPs promotes the open arm structure as well as stabilizes the oriented 3D assembly of primary Pd NPs. The dendrites exhibit superior catalytic activity for methanol (0.5 M) oxidation in alkaline media (1 M NaOH) which is ascribed to the large electrochemical active surface area and the enhanced mass activity with repeated use. Further mass activity improvement has been realized after acid-treatment of dendrites which is attributed to the increment in the -OH group. The dendrites show higher mass activity (J(f) similar to 653 A g(-1)) in comparison with a commercial Pt-carbon/Pd-carbon (Pt-C/Pd-C) catalyst (J(f) similar to 46 and 163 A g(-1), respectively), better operational stability, superior CO tolerance with I-f/I-b (similar to 3.7) over a commercial Pt-C/Pd-C catalyst (I-f/I-b similar to 1.6 and 1.75, respectively) and may serve as a promising alternative to commercial Pt-C catalysts for anode application in alkaline fuel cells. To ensure the adaptability of our 3D-nanodendrites for other catalytic activities, we studied 4-nitrophenol reduction at room temperature. The 3D-nanodendrites show excellent catalytic activity toward 4-nitrophenol reduction, as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A chemical looping process using the redox reactions of iron oxide has been used to produce separate streams of pure H2 and CO2 from a solid fuel. An iron oxide carrier prepared using a mechanical mixing technique and comprised of 100wt.% Fe2O3 was used. It was demonstrated that hydrogen can be produced from three representative coals - a Russian bituminous, a German lignite and a UK sub-bituminous coal. Depending on the fuel, pure H2 with [CO] ≲50vol.ppm can be obtained from the proposed process. The cyclic stability of the iron oxide carrier was not adversely affected by contaminants found in syngas which are gaseous above 273K. Stable quantities of H2 were produced over five cycles for all three coals investigated. Independent of the fuel, SO2 was not formed during the oxidation with steam, i.e. the produced H2 was not contaminated with SO2. Since oxidation with air removes contaminants and generates useful heat and pure N2 for purging, it should be included in the operating cycle. Overall, it was demonstrated that the proposed process may be an attractive approach to upgrade crude syngas produced by the gasification of low-rank coals to pure H2, representing a substantial increase in calorific value, whilst simultaneous capturing CO2, a greenhouse gas. © 2010 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anionic tripod ligand NaLoMe (L_(oMe) - = [(η^5-C_5H_5)Co{P(O)(OCH_3)_2}_3]^-) reacts with RuO_4 in a biphasic reaction mixture of 1% H_2SO_4 and CCI_4 to afford [(L_(oMe) (HO)Ru^(IV) (µ-O)_2Ru ^(IV)(OH)(L_(oMe)] (1), which is treated with aqueous CF_3S0_3H to generate [(L_(oMe)(H_2O)Ru^(IV) (µ-O)_2R^(IV) (OH_2)(L_(oMe)][CF_3SO_3]_2 ([H_21][CF_3SO_3]_2). Addition of iodosobenzene to an acetonitrile solution of this salt yields [(L_(oMe)(O)Ru^v(µ-0)2Ru^v-(O)(_(LoMe)] (2). The dimer 1 can be reduced chemically or electrochemically to the Ru^(III)- Ru^(III) dimers [(L_(oMe)(H_20)Ru^(III) (µ-OH)_2Ru^(III) (OH_2)(L_(oMe)) ]^2+ and [(L_(oMe)) ^(III) (µ-0Hh(µ-0H2)Ru^(III) (L_(oMe)]^2+ which interconvert in aqueous media. Two electron processes dominate both the bulk chemistry and the electrochemistry of 1. Among these processes are the quasi-reversible Ru^(IV) - Ru^(IV)/Ru^(III)- Ru^(III) and Ru^(III)- Ru^(III)/ Ru^(II)- Ru^(II) reductions and a largely irreversible Ru^(V) - Ru^(V)/ Ru^(IV) - Ru^(IV)/oxidation. The dioxo dimer 2 oxidizes alcohols and aldehydes in organic media to afford 1 and the corresponding aldehydes and acids. Analogously, the Ru^(V) - Ru^(V)/ Ru^(IV)- Ru^(IV) redox wave mediates the electrooxidation of alcohols and aldehydes in aqueous buffer. In this system, substrates can be oxidized completely to CO_2. The kinetic behavior of these oxidations was examined by UV-vis and chronoamperometry, respectively, and the chemistry is typical of metal-oxo complexes, indicating that electronic coupling between two metal centers does not dramatically affect the metal-oxo chemistry. Dimer [H_21]^(2+) also reacts with alcohols, aldehydes, and triphenylphosphine in CH_3CN to afford Ru^(III)- Ru^(III) products including [(L_(oMe))CH_3CN) Ru^(III) (µ-OH)_2 Ru^(III) (NCCH_3)( L_(oMe))][CF_3SO_3]2 (characterized by X-ray crystallography) and the corresponding organic products. Reaction of 1 with formaldehyde in aqueous buffer quantitatively affords the triply bridged dimer [(L_(oMe)Ru^(III) (µ-OH)2- (µ-HCOO) Ru^(III) (L_(oMe)][CF_3SO_3] (characterized by X-ray crystallography). This reaction evidently proceeds by two parallel inner-sphere pathways, one of which is autocatalytic. Neither pathway exhibits a primary isotope effect suggesting the rate determining process could be the formation of an intermediate, perhaps a Ru^(IV) - Ru^(IV) formate adduct. The Ru^(III)- Ru^(III)formate adduct is easily oxidized to the Ru^(IV) - Ru^(IV) analog [(L_(oMe)Ru^(IV)(µ-OH)_2-(µ-HCOO) Ru^(IV) (L_(oMe)][CF_3SO_3], which, after isolation, reacts slowly with aqueous formaldehyde to generate free formate and the Ru^(III)- Ru^(III) formate adduct. These dimers function as catalysts for the electrooxidation of formaldehyde at low anodic potentials (+0.0 V versus SCE in aqueous buffer, pH 8.5) and enhance the activity of Nafion treated palladium/carbon heterogeneous fuel cell catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal reaction between nitrogen dioxide and acetaldehyde in the gas phase was investigated at room temperature and atmospheric pressure. The initial rate of disappearance of nitrogen dioxide was 1.00 ± 0.03 order with respect to nitrogen dioxide and 1.00 ± 0.07 order with respect to acetaldehyde. An initial second order rate constant of (8.596 ± 0.189) x 10-3 1.mole-1 sec-1 was obtained at 22.0 ± 0.1 °C and a total pressure of one atmosphere. The activation energy of the reaction was 12,900 cal/mole in the temperature range between 22°C and 122°C.

The products of the reaction were nitric oxide, carbon dioxide, methyl nitrite, nitromethane and a trace amount of trans-dimeric nitrosomethane. The addition of nitric oxide increased the rate of formation of nitromethane and decreased the rate of formation of methyl nitrite. There were no measurable surface effects due to the addition of glass wool or glass beads to the reactor.

Reactants and products were analyzed by gas chromatography. A mechanism was proposed incorporating the principal features of the reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We synthesize Co nanorod filled inside multi-walled CNTs (MWCNTs) by microwave plasma enhanced chemical vapor deposition (MPECVD) and utilize off-axis electron holography to observe the remanent states of the filled metal nanorod inside MWCNTs at room. The MWCNTs grew up to 100-110 nm in diameter and 1.5-1.7 μm in length. The typical bright-field transmission electron microscope (TEM) images revealed both Co/Pd multisegment nanorod and Co nanorod filled inside MWCNTs on the same substrate. We have also performed energy-dispersive X-ray spectrometer (EDS) measurements to characterize the composition of metal filled inside MWCNTs. Based on high-resolution TEM measurements, we observed the face-centered-cubic (fcc) Co filled inside MWCNT. The component of magnetic induction was then measured to be 1.2±0.1 T, which is lower than the expected saturation magnetization of fcc Co of 1.7 T. The partial oxidation of the ferromagnetic metal during the process and the magnetization direction may play an important role in the determination of the quality of the remanent states. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments are indicators of the quality of water overlying them and hence, useful in the assessment of environmental pollution. Temporal and spatial variations in sediment characteristics and organic carbon content from 9 stations in the lower reaches of Periyar River an area in Cochin Backwater, India which is polluted from different sources were studied for one year during 1981. Variations in colour and texture of sediments were brought about by changes in the grain size and state of oxidation of organic matter. The colour of the sediment varied from greyish black at stations 1 and 2, brownish at station 3, black at stations 4 to 8 and reddish at station 9. Organic carbon and sediment texture showed a direct relationship at all stations except at station 9 where organic carbon content showed an irregular pattern. Overall range of organic carbon content was between 1.19 and 29.6 mg.g super(-1). The mean organic carbon of the stations ranged between 6.8 mg.g super(-1) (station 5) and 20.8 mg.g super(-1) (station 9). On the whole temporal variations were considerable with high values at station 9 and low values at station 5. Fluctuations were more at stations 6, 7 and 8.