884 resultados para Carbon composites
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
Combining intrinsically conducting polymers with carbon nanotubes (CNT) helps in creating composites with superior electrical and thermal characteristics. These composites are capable of replacing metals and semiconductors as they possess unique combination of electrical conductivity, flexibility, stretchability, softness and bio-compatibility. Their potential for use in various organic devices such as super capacitors, printable conductors, optoelectronic devices, sensors, actuators, electrochemical devices, electromagnetic interference shielding, field effect transistors, LEDs, thermoelectrics etc. makes them excellent substitutes for present day semiconductors.However, many of these potential applications have not been fully exploited because of various open–ended challenges. Composites meant for use in organic devices require highly stable conductivity for the longevity of the devices. CNT when incorporated at specific proportions, and with special methods contributes quite positively to this end.The increasing demand for energy and depleting fossil fuel reserves has broadened the scope for research into alternative energy sources. A unique and efficient method for harnessing energy is thermoelectric energy conversion method. Here, heat is converted directly into electricity using a class of materials known as thermoelectric materials. Though polymers have low electrical conductivity and thermo power, their low thermal conductivity favours use as a thermoelectric material. The thermally disconnected, but electrically connected carrier pathways in CNT/Polymer composites can satisfy the so-called “phonon-glass/electron-crystal” property required for thermoelectric materials. Strain sensing is commonly used for monitoring in engineering, medicine, space or ocean research. Polymeric composites are ideal candidates for the manufacture of strain sensors. Conducting elastomeric composites containing CNT are widely used for this application. These CNT/Polymer composites offer resistance change over a large strain range due to the low Young‟s modulus and higher elasticity. They are also capable of covering surfaces with arbitrary curvatures.Due to the high operating frequency and bandwidth of electronic equipments electromagnetic interference (EMI) has attained the tag of an „environmental pollutant‟, affecting other electronic devices as well as living organisms. Among the EMI shielding materials, polymer composites based on carbon nanotubes show great promise. High strength and stiffness, extremely high aspect ratio, and good electrical conductivity of CNT make it a filler of choice for shielding applications. A method for better dispersion, orientation and connectivity of the CNT in polymer matrix is required to enhance conductivity and EMI shielding. This thesis presents a detailed study on the synthesis of functionalised multiwalled carbon nanotube/polyaniline composites and their application in electronic devices. The major areas focused include DC conductivity retention at high temperature, thermoelectric, strain sensing and electromagnetic interference shielding properties, thermogravimetric, dynamic mechanical and tensile analysis in addition to structural and morphological studies.
Resumo:
In recent years, many tidal turbine projects have been developed using composites blades. Tidal turbine blades are subject to ocean forces and sea water aggressions, and the reliability of these components is crucial to the profitability of ocean energy recovery systems. The majority of tidal turbine developers have preferred carbon/epoxy blades, so there is a need to understand how prolonged immersion in the ocean affects these composites. In this study the long term behaviour of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of water in the material. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. The effect of sea water ageing on damage thresholds and kinetics has been studied and modelled. After saturation, the damage threshold is modified while kinetics of damage development remain the same.
Resumo:
A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between -50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.
Resumo:
This paper compares and reviews the recommendations and contents of the guide for the design and construction of externally bonded FRP systems for strengthening concrete structures reported by ACI committee 440 and technical report of Externally bonded FRP reinforcement for RC structures (FIB 14) in application of carbon fiber reinforced polymer (CFRP) composites in strengthening of an aging reinforced concrete headstock. The paper also discusses the background, limitations, strengthening for flexure and shear, and other related issues in use of FRP for strengthening of a typical reinforced concrete headstock structure such as durability, de-bonding, strengthening limits, fire and environmental conditions. A case study of strengthening of a bridge headstock using FRP composites is presented as a worked example in order to illustrate and compare the differences between these two design guidelines when used in conjunction with the philosophy of the Austroads (1992) bridge design code.
Resumo:
We show that when a soft polymer like Poly(3-hexyl-thiophene) wraps multiwall nanotubes by coiling around the main axis, a localized deformation of the nanotube structure is observed. High resolution transmission electron microscopy shows that radial compressions of about 4% can take place, and could possibly lead to larger interlayer distance between the nanotube inner walls and reduce the innermost nanotube radius. The mechanical stress due to the polymer presence was confirmed by Raman spectroscopic observation of a gradual upshift of the carbon nanotube G-band when the polymer content in the composites was progressively increased. Vibrational spectroscopy also indicates that charge transfer from the polymer to the nanotubes is responsible for a peak frequency relative downshift for high P3HT-content samples. Continuously acquired transmission electron microscopy images at rising temperature show the MWCNT elastic compression and relaxation due to polymer rearrangement on the nanotube surface.
Resumo:
The search for new multipoint, multidirectional strain sensing devices has received a new impetus since the discovery of carbon nanotubes. The excellent electrical, mechanical, and electromechanical properties of carbon nanotubes make them ideal candidates as primary materials in the design of this new generation of sensing devices. Carbon nanotube based strain sensors proposed so far include those based on individual carbon nanotubes for integration in nano or micro elecromechanical systems (NEMS/MEMS) [1], or carbon nanotube films consisting of spatially connected carbon nanotubes [2], carbon nanotube - polymer composites [3,4] for macroscale strain sensing. Carbon nanotube films have good strain sensing response and offer the possibility of multidirectional and multipoint strain sensing, but have poor performance due to weak interaction between carbon nanotubes. In addition, the carbon nanotube film sensor is extremely fragile and difficult to handle and install. We report here the static and dynamic strain sensing characteristics as well as temperature effects of a sandwich carbon nanotube - polymer sensor fabricated by infiltrating carbon nanotube films with polymer.
Resumo:
Two types of carbon nanotube nanocomposite strain sensors were prepared by mixing carbon nanotubes with epoxy (nanocomposite sensor) and sandwiching a carbon nanotube film between two epoxy layers (sandwich sensor). The conductivity, response and sensitivity to static and dynamic mechanical strains in these sensors were investigated. The nanocomposite sensor with 2-3 wt.% carbon nanotube demonstrated high sensitivity to mechanical strain and environmental temperature, with gauge factors of 5-8. On the other hand, a linear relationship between conductivity and dynamic mechanical strain was observed in the sandwich sensor. The sandwich sensor was also not sensitive to temperature although its strain sensitivity (gauge factor of about 3) was lower as compared with the nanocomposite sensor. Both sensors have excellent response to static and dynamic strains, thereby having great potential for strain sensing applications.
Resumo:
In this work, the structural and gas sensing properties of an electropolymerized, polyaniline (PANI)/multiwall carbon nanotube (MWNT) composite based surface acoustic wave (SAW) sensor are reported. Thin films made of PANI nanofibers were deposited onto 36 lithium tantalate (LiTaO3) SAW transducers using electropolymerization and were subsequently dedoped. Scanning electron microscopy (SEM) revealed the compact growth of the composites which is much denser than that of PANI nanofibers. The PANI/MWNT composite based SAW sensor was then exposed to different concentrations of hydrogen (H2) gas at room temperature with a demonstrated electrical response.
Resumo:
Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently attracted numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We hereby investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. Carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of epoxy. GnPs have been proved far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. Reduced acoustic impedance mismatch resulted from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.
Resumo:
Over the last decade advanced composite materials, like carbon fibre reinforced polymer (CFRP), have increasingly been used in civil engineering infrastructure. The benefits of advanced composites are rapidly becoming evident. This paper focuses on the comparative performance of steel and concrete members retrofitted by carbon fibre reinforced polymers. The objective of this work is a systematic assessment and evaluation of the performance of CFRP for both the concrete and steel members available in the technical literature. Existing empirical and analytical models were studied. Comparison is made with respect to failure mode, bond characteristics, fatigue behaviour, durability, corrosion, load carrying capacity and force transfer. It is concluded that empirical expressions for the concrete-CFRP composite are not readily suited for direct use in the steel-CFRP composite. This paper identifies some of the major issues that need further investigation.
Resumo:
Owing to their unique mechanical, electrical, optical, and thermal properties, carbon nanostructures including carbon nanotubes and graphenes show great promise for advancing the fields of biology and medicine. Many reports have demonstrated the promise of these carbon nanostructures and their hybrid structures (composites with polymers, ceramics, and metal nanoparticles, etc.) for a variety of biomedical areas ranging from biosensing, drug delivery, and diagnostics, to cancer treatment, tissue engineering, and bioterrorism prevention. However, the issue of the safety and toxicity of these carbon nanostructures, which is vital to their use as diagnostic and therapeutic tools in biomedical fields, has not been completely resolved. This paper aims to provide a summary of the features of carbon nanotube and graphene-based materials and current research progress in biomedical applications. We also highlight the current opinions within the scientific community on the toxicity and safety of these carbon structures.
Resumo:
Carbon microcoils (CMCs) have been coated with a nickel-phosphorus (Ni-P) film using an electroless plating process, with sodium hypophosphite as a reducing agent in an alkaline bath. CMC composites have potential applications as microwave absorption materials. The morphology, elemental composition and phases in the coating layer of the CMCs and Ni-coated CMCs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The effects of process parameters such as pH, temperature and coating time of the plating bath on the phosphorus content and deposition rate of the electroless Ni-P coating were studied. The results revealed that a continuous, uniform and low-phosphorous nickel coating was deposited on the surface of the CMCs for 20 min at pH 9.0, plating bath temperature 70 °C. The as-deposited coatings with approximately 4.5 wt.% phosphorus were found to consist of a mix of nano- and microcrystalline phases. The mean particle size of Ni-P nanoparticles on the outer surface of the CMCs was around 11.9 nm. The deposition rate was found to moderately increase with increasing pH, whereas, the phosphorous content of the deposit exhibited a significant decrease. Moreover, the material of the coating underwent a phase transition between an amorphous and a crystalline structure. The thickness of the deposit and the deposition rate may be controlled through careful variation of the coating time and plating bath temperature.