996 resultados para Canine population
Resumo:
Background:: The first major Crohn's disease (CD) susceptibility gene, NOD2, implicates the innate intestinal immune system and other pattern recognition receptors in the pathogenesis of this chronic, debilitating disorder. These include the Toll‐like receptors, specifically TLR4 and TLR5. A variant in the TLR4 gene (A299G) has demonstrated variable association with CD. We aimed to investigate the relationship between TLR4 A299G and TLR5 N392ST, and an Australian inflammatory bowel disease cohort, and to explore the strength of association between TLR4 A299G and CD using global meta‐analysis. Methods:: Cases (CD = 619, ulcerative colitis = 300) and controls (n = 360) were genotyped for TLR4 A299G, TLR5 N392ST, and the 4 major NOD2 mutations. Data were interrogated for case‐control analysis prior to and after stratification by NOD2 genotype. Genotype–phenotype relationships were also sought. Meta‐analysis was conducted via RevMan. Results:: The TLR4 A299G variant allele showed a significant association with CD compared to controls (P = 0.04) and a novel NOD2 haplotype was identified which strengthened this (P = 0.003). Furthermore, we identified that TLR4 A299G was associated with CD limited to the colon (P = 0.02). In the presence of the novel NOD2 haplotype, TLR4 A299G was more strongly associated with colonic disease (P < 0.001) and nonstricturing disease (P = 0.009). A meta‐analysis of 11 CD cohorts identified a 1.5‐fold increase in risk for the variant TLR4 A299G allele (P < 0.00001). Conclusions:: TLR 4 A299G appears to be a significant risk factor for CD, in particular colonic, nonstricturing disease. Furthermore, we identified a novel NOD2 haplotype that strengthens the relationship between TLR4 A299G and these phenotypes.
Resumo:
Selenium (Se) is an essential trace element and the clinical consequences of Se deficiency have been well-documented. Se is primarily obtained through the diet and recent studies have suggested that the level of Se in Australian foods is declining. Currently there is limited data on the Se status of the Australian population so the aim of this study was to determine the plasma concentration of Se and glutathione peroxidase (GSH-Px), a well-established biomarker of Se status. Furthermore, the effect of gender, age and presence of cardiovascular disease (CVD) was also examined. Blood plasma samples from healthy subjects (140 samples, mean age = 54 years; range, 20-86 years) and CVD patients (112 samples, mean age = 67 years; range, 40-87 years) were analysed for Se concentration and GSH-Px activity. The results revealed that the healthy Australian cohort had a mean plasma Se level of 100.2 +/- 1.3 microg Se/L and a mean GSH-Px activity of 108.8 +/- 1.7 U/L. Although the mean value for plasma Se reached the level required for optimal GSH-Px activity (i.e. 100 microg Se/L), 47% of the healthy individuals tested fell below this level. Further evaluation revealed that certain age groups were more at risk of a lowered Se status, in particular, the oldest age group of over 81 years (females = 97.6 +/- 6.1 microg Se/L; males = 89.4 +/- 3.8 microg Se/L). The difference in Se status between males and females was not found to be significant. The presence of CVD did not appear to influence Se status, with the exception of the over 81 age group, which showed a trend for a further decline in Se status with disease (plasma Se, 93.5 +/- 3.6 microg Se/L for healthy versus 88.2 +/- 5.3 microg Se/L for CVD; plasma GSH-Px, 98.3 +/- 3.9 U/L for healthy versus 87.0 +/- 6.5 U/L for CVD). These findings emphasise the importance of an adequate dietary intake of Se for the maintenance of a healthy ageing population, especially in terms of cardiovascular health.
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
Objectives Only 193 people from Pitcairn Island, all descended from 9 ‘Bounty’ mutineers and 12 Tahitian women, moved to the uninhabited Norfolk Island in 1856. Our objective was to assess the population of Norfolk Island, several thousand km off the eastern coast of Australia, as a genetic isolate of potential use for cardiovascular disease (CVD) gene mapping. Methods A total of 602 participants, approximately two thirds of the island’s present adult population, were characterized for a panel of CVD risk factors. Statistical power and heritability were calculated. Results Norfolk Islander’s possess an increased prevalence of hypertension, obesity and multiple CVD risk factors when compared to outbred Caucasian populations. 64% of the study participants were descendents of the island’s original founder population. Triglycerides, cholesterol, and blood pressures all had heritabilities above 0.2. Conclusions The Norfolk land population is a potentially useful genetic isolate for gene mapping studies aimed at identifying CVD risk factor quantitative trait loci (QTL).
Resumo:
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) resulting in accumulating neurological disability. The disorder is more prevalent at higher latitudes. To investigate VDR gene variation using three intragenic restriction fragment length polymorphisms (Apa I, Taq I and Fok I) in an Australian MS case-control population. One hundred and four Australian MS patients were studied with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 104 age-, sex-, and ethnicity-matched controls were investigated as a comparative group. Our results show a significant difference of genotype distribution frequency between the case and control groups for the functional exon 9 VDR marker Taq I (p(Gen) = 0.016) and interestingly, a stronger difference for the allelic frequency (p(All) = 0.0072). The Apa I alleles were also found to be associated with MS (p(All) = 0.04) but genotype frequencies were not significantly different from controls (p(Gen) = 0.1). The Taq and Apa variants are in very strong and significant linkage disequilibrium (D' = 0.96, P < 0.0001). The genotypic associations are strongest for the progressive forms of MS (SP-MS and PP-MS). Our results support a role for the VDR gene increasing the risk of developing multiple sclerosis, particularly the progressive clinical subtypes of MS.
Resumo:
Multiple Sclerosis (MS) is a chronic neurological disease characterized by demyelination associated with infiltrating white blood cells in the central nervous system (CNS). Nitric oxide synthases (NOS) are a family of enzymes that control the production of nitric oxide. It is possible that neuronal NOS could be involved in MS pathophysiology and hence the nNOS gene is a potential candidate for involvement in disease susceptibility. The aim of this study was to determine whether allelic variation at the nNOS gene locus is associated with MS in an Australian cohort. DNA samples obtained from a Caucasian Australian population affected with MS and an unaffected control population, matched for gender, age and ethnicity, were genotyped for a microsatellite polymorphism in the promoter region of the nNOS gene. Allele frequencies were compared using chi-squared based statistical analyses with significance tested by Monte Carlo simulation. Allelic analysis of MS cases and controls produced a chi-squared value of 5.63 with simulated P = 0.96 (OR(max) = 1.41, 95% CI: 0.926-2.15). Similarly, a Mann-Whitney U analysis gave a non-significant P-value of 0.377 for allele distribution. No differences in allele frequencies were observed for gender or clinical course subtype (P > 0.05). Statistical analysis indicated that there is no association of this nNOS variant and MS and hence the gene does not appear to play a genetically significant role in disease susceptibility.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) affecting most commonly the Caucasian population. Nitric oxide (NO) is a biological signaling and effector molecule and is especially important during inflammation. Inducible nitric oxide synthase (iNOS) is one of the three enzymes responsible for generating NO. It has been reported that there is an excessive production of NO in MS concordant with an increased expression of iNOS in MS lesions. This study investigated the role of a bi-allelic tetranucleotide polymorphism located in the promoter region of the human iNOS (NOS2A) gene in MS susceptibility. A group of MS patients (n = 101) were genotyped and compared to an age- and sex-matched group of healthy controls (n = 101). The MS group was subdivided into three subtypes, namely relapsing-remitting MS (RR-MS), secondary-progressive MS (SP-MS) and primary-progressive MS (PP-MS). Results of a chi-squared analysis and a Fisher's exact test revealed that allele and genotype distributions between cases and controls were not significantly different for the total population (chi(2) = 3.4, P(genotype) = 0.15; chi(2) = 3.4, P(allele) = 0.082) and for each subtype of MS (P > 0.05). This suggests that there is no direct association of this iNOS gene variant with MS susceptibility.
Resumo:
Linkage disequilibrium (LD) mapping is commonly used as a fine mapping tool in human genome mapping and has been used with some success for initial disease gene isolation in certain isolated in-bred human populations. An understanding of the population history of domestic dog breeds suggests that LD mapping could be routinely utilized in this species for initial genome-wide scans. Such an approach offers significant advantages over traditional linkage analysis. Here, we demonstrate, using canine copper toxicosis in the Bedlington terrier as the model, that LD mapping could be reasonably expected to be a useful strategy in low-resolution, genome-wide scans in pure-bred dogs. Significant LD was demonstrated over distances up to 33.3 cM. It is very unlikely, for a number of reasons discussed, that this result could be extrapolated to the rest of the genome. It is, however, consistent with the expectation given the population structure of canine breeds and, in this breed at least, with the hypothesis that it may be possible to utilize LD in a genome-wide scan. In this study, LD mapping confirmed the location of the copper toxicosis in Bedlington terrier gene (CT-BT) and was able to do so in a population that was refractory to traditional linkage analysis.
Resumo:
Solar keratoses affect approximately 50% of Australian Caucasians aged over 40 y. Solar keratoses can undergo malignant transformation into squamous cell carcinoma followed by possible metastasis and are risk factors for basal cell carcinoma, melanoma, and squamous cell carcinoma. The glutathione-S-transferase genes play a part in detoxification of carcinogens and mutagens, including some produced by ultraviolet radiation. This study examined the role of glutathione-S-transferase M1, T1, P1, and Z1 gene polymorphisms in susceptibility to solar keratoses development. Using DNA samples from volunteers involved in the Nambour Skin Cancer Prevention Trial, allele and genotype frequencies were determined using polymerase chain reaction and restriction enzyme digestion. No significant differences were detected in glutathione-S-transferase P1 and glutathione-S-transferase Z1 allele or genotype frequencies; however, a significant association between glutathione-S-transferase M1 genotypes and solar keratoses development was detected (p=0.003) with null individuals having an approximate 2-fold increase in risk for solar keratoses development (odds ratio: 2.1; confidence interval: 1.3-3.5) and a significantly higher increase in risk in conjunction with high outdoor exposure (odds ratio: 3.4; confidence interval: 1.9-6.3). Also, a difference in glutathione-S-transferase T1 genotype frequencies was detected (p=0.039), although considering that multiple testing was undertaken, this was found not to be significant. Fair skin and inability to tan were found to be highly significant risk factors for solar keratoses development with odds ratios of 18.5 (confidence interval: 5.7-59.9) and 7.4 (confidence interval: 2.6-21.0), respectively. Overall, glutathione-S-transferase M1 conferred a significant increase in risk of solar keratoses development, particularly in the presence of high outdoor exposure and synergistically with known phenotypic risk factors of fair skin and inability to tan.
Resumo:
Solar keratoses (SKs) are induced by exposure to UV radiation and are capable of undergoing transformation to squamous cell carcinoma (SCC).1 The two main factors influencing the occurrence of SK are the sensitivity of the skin to sunlight and the total duration of solar exposure. These factors are responsible for the high incidence of SK in Australia. Although the influence of genetic factors is not defined, there is evidence that the gene encoding the enzyme, glutathione S-transferase, may be implicated in cancer predisposition and therefore SK. Glutathione S-transferase Mu-1 (GSTM1) is an isoenzyme involved in the detoxification of carcinogens. The GSTM1 protein is completely absent in approximately 50% of white persons. This absence is caused by a homozygous gene deletion on chromosome 1p resulting in a null genotype.2 Katoh3 showed that the frequency of the GSTM1 null genotype was significantly higher in 85 patients with urothelial cancer (61.2%; p < 0.05), suggesting that the null genotype may increase cancer susceptibility. This finding was supported by Lafuente et al.4 who found evidence that persons who lack the GSTM1 gene have approximately twice the chance of experiencing malignant melanoma. Further research in the United Kingdom found that patients with two or more skin tumors of different types, basal cell carcinoma (BCC) and SCC, had a significantly higher frequency of GSTM1 null genotypes than controls (71%; p = 0.033). However the GSTM1 genotype in patients with only SCC was not excessive in this population.5 Persons residing in northern Australia have the highest incidence of nonmelanoma skin cancer (SCC and BCC) in the world6 and receive far greater solar exposure than persons residing in the United Kingdom. It is possible that the GSTM1 null genotype may affect susceptibility to SK, which may act as SCC precursors, in Australians exposed to these high levels of solar radiation.
Resumo:
Background Parenting a child with a developmental disability presents a variety of long-term physical and emotional challenges. When exploring parent wellbeing, the disability field is dominated by a deficit model despite parents reportedly demonstrating coping and resilience. The current study is embedded in a salutogenic theory (Antonovsky, 1979) and explores the potential for parents of children diagnosed with a developmental disability to undergo positive changes. Method Participants were 6 fathers and 27 mothers who completed measures of distress and posttraumatic growth. Results Compared with a number of other Australian samples, participants reported significantly higher levels of posttraumatic growth. Reports of growth did not negate reports of distress. Results also indicated that constructs of distress and growth were independent. Conclusions The research has important implications for disability support services, reminding providers to be cognisant of the potential for growth, as well as distress, thereby permitting an atmosphere conducive to exploring such outcomes.
Resumo:
The ubiquitous chemical messenger molecule nitric oxide (NO) has been implicated in a diverse range of biological activities including neurotransmission, smooth muscle motility and mediation of nociception. Endogenous synthesis of NO by the neuronal isoform of the nitric oxide synthase gene family has an essential role within the central and peripheral nervous systems in addition to the autonomic innervation of cerebral blood vessels. To investigate the potential role of NO and more specifically the neuronal nitric oxide synthase (nNOS) gene in migraine susceptibility, we investigated two microsatellite repeat variants residing within the 5′ and 3′ regions of the nNOS gene. Population genomic evaluation of the two nNOS repeat variants indicated significant linkage disequilibrium between the two loci. Z-DNA conformational sequence structures within the 5′ region of the nNOS gene have the potential to enhance or repress gene promoter activity. We suggest that genetic analysis of this 5′ repeat variant is the more functional variant expressing gene wide information that could affect endogenous NO synthesis and potentially result in diseased states. However, no association with migraine (with or without aura) was seen in our extensive case-control cohort (n = 579 affected with matched controls), when both the 5′ and 3′ genetic variants were investigated.
Resumo:
A cross-sectional survey was conducted, and the construct validity and reliability of the Brisbane Practice Environment Measure in an Australian sample of registered nurses were examined. Nurses were randomly selected from the database of an Australian nursing organization. The original 33 items of the Brisbane Practice Environment Measure were utilized to inform the psychometric properties using confirmatory factor analysis. The Cronbach's alpha was 0.938 for the total scale and ranged 0.657–0.887 for the subscales. A five-factor structure of the measure was confirmed, χ2 = 944.622, (P < 0.01), χ2/d.f. ratio = 2.845, Tucker Lewis Index 0.929, Root Mean Square Error = 0.061 and Comparative Fit Index = 0.906. The selected 28 items of the measure proved reliable and valid in measuring effects of the practice environment upon Australian nurses. The implications are that regular measurement of the practice environment using these 28 items might assist in the development of strategies which might improve job satisfaction and retention of registered nurses in Australia.
Resumo:
Conservation of free-ranging cheetah (Acinonyx jubatus) populations is multi faceted and needs to be addressed from an ecological, biological and management perspective. There is a wealth of published research, each focusing on a particular aspect of cheetah conservation. Identifying the most important factors, making sense of various (and sometimes contrasting) findings, and taking decisions when little or no empirical data is available, are everyday challenges facing conservationists. Bayesian networks (BN) provide a statistical modeling framework that enables analysis and integration of information addressing different aspects of conservation. There has been an increased interest in the use of BNs to model conservation issues, however the development of more sophisticated BNs, utilizing object-oriented (OO) features, is still at the frontier of ecological research. We describe an integrated, parallel modeling process followed during a BN modeling workshop held in Namibia to combine expert knowledge and data about free-ranging cheetahs. The aim of the workshop was to obtain a more comprehensive view of the current viability of the free-ranging cheetah population in Namibia, and to predict the effect different scenarios may have on the future viability of this free-ranging cheetah population. Furthermore, a complementary aim was to identify influential parameters of the model to more effectively target those parameters having the greatest impact on population viability. The BN was developed by aggregating diverse perspectives from local and independent scientists, agents from the national ministry, conservation agency members and local fieldworkers. This integrated BN approach facilitates OO modeling in a multi-expert context which lends itself to a series of integrated, yet independent, subnetworks describing different scientific and management components. We created three subnetworks in parallel: a biological, ecological and human factors network, which were then combined to create a complete representation of free-ranging cheetah population viability. Such OOBNs have widespread relevance to the effective and targeted conservation management of vulnerable and endangered species.
Resumo:
Autologous bone marrow-derived mesenchymal stem cell (BMSCs)-based therapies show great potential in regenerative medicine. However, long-term storage and preservation of BMSCs for clinical use is still a great clinical challenge. The present study aimed to analyze the effect of long-term cryopreservation on the regenerative ability of BMSCs. After cryopreservation of BMSCs from beagle dogs for three years, cell viability, and quantitative analysis of alkaline phosphatase (ALP) activity, surface adherence, and mineralized nodule formation were analyzed. BMSCs in cell-scaffold complex were then implanted into nude mice. There was no significant difference in cell viability and ALP activity between osteogenic differentiation and non-osteogenic differentiation of BMSCs, and BMSCs in cell-scaffold complex retained osteogenic differentiation ability in vivo. These results indicate that long-term cryopreserved BMSCs maintain their have capacity to contribute to regeneration.