1000 resultados para Calcinations temperature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin film nanostructured gas sensors typically operate at temperatures above 400°C, but lower temperature operation is highly desirable, especially for remote area field sensing as this reduces significantly power consumption. We have investigated a range of sensor materials based on both pure and doped tungsten oxide (mainly focusing on Fe-doping), deposited using both thermal evaporation and electron-beam evaporation, and using a variety of post-deposition annealing. The films show excellent sensitivity at operating temperatures as low as 150°C for detection of NO2. There is a definite relationship between the sensitivity and the crystallinity and nanostructure obtained through the deposition and heat treatment processes, as well as variations in the conductivity caused both by doping and heat treatmetn. The ultimate goal of this work is to control the sensing properties, including selectivity to specific gases through the engineering of the electronic properties and the nanostructure of the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a population-based ecological study designed to investigate the issue of mortality displacement (or "harvesting" effect) in the assessment of temperature-related deaths in Brisbane, Australia. It examines the temperature impacts on mortality, and assesses the harvesting effects on the temperature–related deaths. This study contributes to the knowledge base of understanding the temperature-mortality relationship and assists in formulating and evaluating public health intervention strategies within the context of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli (UPEC) is the leading causative agent of urinary tract infections (UTI) in the developed world. Among the major virulence factors of UPEC, surface expressed adhesins mediate attachment and tissue tropism. UPEC strains typically possess a range of adhesins, with type 1 fimbriae and P fimbriae of the chaperone-usher class the best characterised. We previously identified and characterised F9 as a new chaperone-usher fimbrial type that mediates biofilm formation. However, the regulation and specific role of F9 fimbriae remained to be determined in the context of wild-type clinical UPEC strains. In this study we have assessed the distribution and genetic context of the f9 operon among diverse E. coli lineages and pathotypes and demonstrated that f9 genes are significantly more conserved in a UPEC strain collection in comparison to the well-defined E. coli reference (ECOR) collection. In the prototypic UPEC strain CFT073, the global regulator protein H-NS was identified as a transcriptional repressor of f9 gene expression at 37°C through its ability to bind directly to the f9 promoter region. F9 fimbriae expression was demonstrated at 20°C, representing the first evidence of functional F9 fimbriae expression by wild-type E. coli. Finally, glycan array analysis demonstrated that F9 fimbriae recognise and bind to terminal Galβ1-3GlcNAc structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphyne is an allotrope of graphene. The mechanical properties of graphynes (α-, β-, γ- and 6,6,12-graphynes) under uniaxial tension deformation at different temperatures and strain rates are studied using molecular dynamics simulations. It is found that graphynes are more sensitive to temperature changes than graphene in terms of fracture strength and Young's modulus. The temperature sensitivity of the different graphynes is proportionally related to the percentage of acetylenic linkages in their structures, with the α-graphyne (having 100% of acetylenic linkages) being most sensitive to temperature. For the same graphyne, temperature exerts a more pronounced effect on the Young's modulus than fracture strength, which is different from that of graphene. The mechanical properties of graphynes are also sensitive to strain rate, in particular at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modern buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behaviour in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modern residential buildings are proposed for the testing of LSF walls.

Relevância:

20.00% 20.00%

Publicador: