881 resultados para Cadeias de Markov. Algoritmos genéticos


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho propõe uma abordagem computacional evolutiva para a resolução do problema de alocação de dispositivos indicadores de faltas (IFs) em alimentadores primários de distribuição de energia elétrica. De forma mais específica, o problema de se obter o melhor local de instalação é solucionado por meio da técnica de Algoritmos Genéticos (AGs) que busca obter uma configuração eficiente de instalação de IFs no tronco principal de um alimentador de distribuição. Assim, faz-se a modelagem do mesmo na forma de um problema de otimização orientado à melhoria dos indicadores de qualidade do serviço e ao encontro de uma solução economicamente atraente. Os resultados com dados reais comprovam a eficiência da metodologia proposta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muitas pesquisas estão sendo desenvolvidas buscando nos sistemas inteligentes soluções para diagnosticar falhas em máquinas elétricas. Estas falhas envolvem desde problemas elétricos, como curto-circuito numa das fases do estator, ate problemas mecânicos, como danos nos rolamentos. Dentre os sistemas inteligentes aplicados nesta área, destacam-se as redes neurais artificiais, os sistemas fuzzy, os algoritmos genéticos e os sistemas híbridos, como o neuro-fuzzy. Assim, o objetivo deste artigo é traçar um panorama geral sobre os trabalhos mais relevantes que se beneficiaram dos sistemas inteligentes nas diferentes etapas de análise e diagnóstico de falhas em motores elétricos, cuja principal contribuição está em disponibilizar diversos aspectos técnicos a fim de direcionar futuros trabalhos nesta área de aplicação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work is to present an efficient method for phasor estimation based on a compact Genetic Algorithm (cGA) implemented in Field Programmable Gate Array (FPGA). To validate the proposed method, an Electrical Power System (EPS) simulated by the Alternative Transients Program (ATP) provides data to be used by the cGA. This data is as close as possible to the actual data provided by the EPS. Real life situations such as islanding, sudden load increase and permanent faults were considered. The implementation aims to take advantage of the inherent parallelism in Genetic Algorithms in a compact and optimized way, making them an attractive option for practical applications in real-time estimations concerning Phasor Measurement Units (PMUs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES] La Planificación de Rutas o Caminos es un disciplina de Robótica que trata la búsqueda de caminos factibles u óptimos. Para la mayoría de vehículos y entornos, no es un problema trivial y por tanto nos encontramos con un gran diversidad de algoritmos para resolverlo, no sólo en Robótica e Inteligencia Artificial, sino también como parte de la literatura de Optimización, con Métodos Numéricos y Algoritmos Bio-inspirados, como Algoritmos Genéticos y el Algoritmo de la Colonia de Hormigas. El caso particular de escenarios de costes variables es considerablemente difícil de abordar porque el entorno en el que se mueve el vehículo cambia con el tiempo. El presente trabajo de tesis estudia este problema y propone varias soluciones prácticas para aplicaciones de Robótica Submarina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La influencia de la aerodinámica en el diseño de los trenes de alta velocidad, unida a la necesidad de resolver nuevos problemas surgidos con el aumento de la velocidad de circulación y la reducción de peso del vehículo, hace evidente el interés de plantear un estudio de optimización que aborde tales puntos. En este contexto, se presenta en esta tesis la optimización aerodinámica del testero de un tren de alta velocidad, llevada a cabo mediante el uso de métodos de optimización avanzados. Entre estos métodos, se ha elegido aquí a los algoritmos genéticos y al método adjunto como las herramientas para llevar a cabo dicha optimización. La base conceptual, las características y la implementación de los mismos se detalla a lo largo de la tesis, permitiendo entender los motivos de su elección, y las consecuencias, en términos de ventajas y desventajas que cada uno de ellos implican. El uso de los algorimos genéticos implica a su vez la necesidad de una parametrización geométrica de los candidatos a óptimo y la generación de un modelo aproximado que complementa al método de optimización. Estos puntos se describen de modo particular en el primer bloque de la tesis, enfocada a la metodología seguida en este estudio. El segundo bloque se centra en la aplicación de los métodos a fin de optimizar el comportamiento aerodinámico del tren en distintos escenarios. Estos escenarios engloban los casos más comunes y también algunos de los más exigentes a los que hace frente un tren de alta velocidad: circulación en campo abierto con viento frontal o viento lateral, y entrada en túnel. Considerando el caso de viento frontal en campo abierto, los dos métodos han sido aplicados, permitiendo una comparación de las diferentes metodologías, así como el coste computacional asociado a cada uno, y la minimización de la resistencia aerodinámica conseguida en esa optimización. La posibilidad de evitar parametrizar la geometría y, por tanto, reducir el coste computacional del proceso de optimización es la característica más significativa de los métodos adjuntos, mientras que en el caso de los algoritmos genéticos se destaca la simplicidad y capacidad de encontrar un óptimo global en un espacio de diseño multi-modal o de resolver problemas multi-objetivo. El caso de viento lateral en campo abierto considera nuevamente los dos métoxi dos de optimización anteriores. La parametrización se ha simplificado en este estudio, lo que notablemente reduce el coste numérico de todo el estudio de optimización, a la vez que aún recoge las características geométricas más relevantes en un tren de alta velocidad. Este análisis ha permitido identificar y cuantificar la influencia de cada uno de los parámetros geométricos incluídos en la parametrización, y se ha observado que el diseño de la arista superior a barlovento es fundamental, siendo su influencia mayor que la longitud del testero o que la sección frontal del mismo. Finalmente, se ha considerado un escenario más a fin de validar estos métodos y su capacidad de encontrar un óptimo global. La entrada de un tren de alta velocidad en un túnel es uno de los casos más exigentes para un tren por el pico de sobrepresión generado, el cual afecta a la confortabilidad del pasajero, así como a la estabilidad del vehículo y al entorno próximo a la salida del túnel. Además de este problema, otro objetivo a minimizar es la resistencia aerodinámica, notablemente superior al caso de campo abierto. Este problema se resuelve usando algoritmos genéticos. Dicho método permite obtener un frente de Pareto donde se incluyen el conjunto de óptimos que minimizan ambos objetivos. ABSTRACT Aerodynamic design of trains influences several aspects of high-speed trains performance in a very significant level. In this situation, considering also that new aerodynamic problems have arisen due to the increase of the cruise speed and lightness of the vehicle, it is evident the necessity of proposing an optimization study concerning the train aerodynamics. Thus, the aerodynamic optimization of the nose shape of a high-speed train is presented in this thesis. This optimization is based on advanced optimization methods. Among these methods, genetic algorithms and the adjoint method have been selected. A theoretical description of their bases, the characteristics and the implementation of each method is detailed in this thesis. This introduction permits understanding the causes of their selection, and the advantages and drawbacks of their application. The genetic algorithms requirethe geometrical parameterization of any optimal candidate and the generation of a metamodel or surrogate model that complete the optimization process. These points are addressed with a special attention in the first block of the thesis, focused on the methodology considered in this study. The second block is referred to the use of these methods with the purpose of optimizing the aerodynamic performance of a high-speed train in several scenarios. These scenarios englobe the most representative operating conditions of high-speed trains, and also some of the most exigent train aerodynamic problems: front wind and cross-wind situations in open air, and the entrance of a high-speed train in a tunnel. The genetic algorithms and the adjoint method have been applied in the minimization of the aerodynamic drag on the train with front wind in open air. The comparison of these methods allows to evaluate the methdology and computational cost of each one, as well as the resulting minimization of the aerodynamic drag. Simplicity and robustness, the straightforward realization of a multi-objective optimization, and the capability of searching a global optimum are the main attributes of genetic algorithm. However, the requirement of geometrically parameterize any optimal candidate is a significant drawback that is avoided with the use of the adjoint method. This independence of the number of design variables leads to a relevant reduction of the pre-processing and computational cost. Considering the cross-wind stability, both methods are used again for the minimization of the side force. In this case, a simplification of the geometric parameterization of the train nose is adopted, what dramatically reduces the computational cost of the optimization process. Nevertheless, some of the most important geometrical characteristics are still described with this simplified parameterization. This analysis identifies and quantifies the influence of each design variable on the side force on the train. It is observed that the A-pillar roundness is the most demanding design parameter, with a more important effect than the nose length or the train cross-section area. Finally, a third scenario is considered for the validation of these methods in the aerodynamic optimization of a high-speed train. The entrance of a train in a tunnel is one of the most exigent train aerodynamic problems. The aerodynamic consequences of high-speed trains running in a tunnel are basically resumed in two correlated phenomena, the generation of pressure waves and an increase in aerodynamic drag. This multi-objective optimization problem is solved with genetic algorithms. The result is a Pareto front where a set of optimal solutions that minimize both objectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El artículo aborda el problema del encaje de diversas imágenes de una misma escena capturadas por escáner 3d para generar un único modelo tridimensional. Para ello se utilizaron algoritmos genéticos. ABSTRACT: This work introduces a solution based on genetic algorithms to find the overlapping area between two point cloud captures obtained from a three-dimensional scanner. Considering three translation coordinates and three rotation angles, the genetic algorithm evaluates the matching points in the overlapping area between the two captures given that transformation. Genetic simulated annealing is used to improve the accuracy of the results obtained by the genetic algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years there has been a heightened interest in data treatment and analysis with the aim of discovering hidden knowledge and eliciting relationships and patterns within this data. Data mining techniques (also known as Knowledge Discovery in Databases) have been applied over a wide range of fields such as marketing, investment, fraud detection, manufacturing, telecommunications and health. In this study, well-known data mining techniques such as artificial neural networks (ANN), genetic programming (GP), forward selection linear regression (LR) and k-means clustering techniques, are proposed to the health and sports community in order to aid with resistance training prescription. Appropriate resistance training prescription is effective for developing fitness, health and for enhancing general quality of life. Resistance exercise intensity is commonly prescribed as a percent of the one repetition maximum. 1RM, dynamic muscular strength, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance. The safety of the 1RM assessment has been questioned as such an enormous effort may lead to muscular injury. Prediction equations could help to tackle the problem of predicting the 1RM from submaximal loads, in order to avoid or at least, reduce the associated risks. We built different models from data on 30 men who performed up to 5 sets to exhaustion at different percentages of the 1RM in the bench press action, until reaching their actual 1RM. Also, a comparison of different existing prediction equations is carried out. The LR model seems to outperform the ANN and GP models for the 1RM prediction in the range between 1 and 10 repetitions. At 75% of the 1RM some subjects (n = 5) could perform 13 repetitions with proper technique in the bench press action, whilst other subjects (n = 20) performed statistically significant (p < 0:05) more repetitions at 70% than at 75% of their actual 1RM in the bench press action. Rate of perceived exertion (RPE) seems not to be a good predictor for 1RM when all the sets are performed until exhaustion, as no significant differences (p < 0:05) were found in the RPE at 75%, 80% and 90% of the 1RM. Also, years of experience and weekly hours of strength training are better correlated to 1RM (p < 0:05) than body weight. O'Connor et al. 1RM prediction equation seems to arise from the data gathered and seems to be the most accurate 1RM prediction equation from those proposed in literature and used in this study. Epley's 1RM prediction equation is reproduced by means of data simulation from 1RM literature equations. Finally, future lines of research are proposed related to the problem of the 1RM prediction by means of genetic algorithms, neural networks and clustering techniques. RESUMEN En los últimos años ha habido un creciente interés en el tratamiento y análisis de datos con el propósito de descubrir relaciones, patrones y conocimiento oculto en los mismos. Las técnicas de data mining (también llamadas de \Descubrimiento de conocimiento en bases de datos\) se han aplicado consistentemente a lo gran de un gran espectro de áreas como el marketing, inversiones, detección de fraude, producción industrial, telecomunicaciones y salud. En este estudio, técnicas bien conocidas de data mining como las redes neuronales artificiales (ANN), programación genética (GP), regresión lineal con selección hacia adelante (LR) y la técnica de clustering k-means, se proponen a la comunidad del deporte y la salud con el objetivo de ayudar con la prescripción del entrenamiento de fuerza. Una apropiada prescripción de entrenamiento de fuerza es efectiva no solo para mejorar el estado de forma general, sino para mejorar la salud e incrementar la calidad de vida. La intensidad en un ejercicio de fuerza se prescribe generalmente como un porcentaje de la repetición máxima. 1RM, fuerza muscular dinámica, una repetición máxima o una ejecución máxima, se define operacionalmente como la carga máxima que puede ser movida en un rango de movimiento específico, una vez y con una técnica correcta. La seguridad de las pruebas de 1RM ha sido cuestionada debido a que el gran esfuerzo requerido para llevarlas a cabo puede derivar en serias lesiones musculares. Las ecuaciones predictivas pueden ayudar a atajar el problema de la predicción de la 1RM con cargas sub-máximas y son empleadas con el propósito de eliminar o al menos, reducir los riesgos asociados. En este estudio, se construyeron distintos modelos a partir de los datos recogidos de 30 hombres que realizaron hasta 5 series al fallo en el ejercicio press de banca a distintos porcentajes de la 1RM, hasta llegar a su 1RM real. También se muestra una comparación de algunas de las distintas ecuaciones de predicción propuestas con anterioridad. El modelo LR parece superar a los modelos ANN y GP para la predicción de la 1RM entre 1 y 10 repeticiones. Al 75% de la 1RM algunos sujetos (n = 5) pudieron realizar 13 repeticiones con una técnica apropiada en el ejercicio press de banca, mientras que otros (n = 20) realizaron significativamente (p < 0:05) más repeticiones al 70% que al 75% de su 1RM en el press de banca. El ínndice de esfuerzo percibido (RPE) parece no ser un buen predictor del 1RM cuando todas las series se realizan al fallo, puesto que no existen diferencias signifiativas (p < 0:05) en el RPE al 75%, 80% y el 90% de la 1RM. Además, los años de experiencia y las horas semanales dedicadas al entrenamiento de fuerza están más correlacionadas con la 1RM (p < 0:05) que el peso corporal. La ecuación de O'Connor et al. parece surgir de los datos recogidos y parece ser la ecuación de predicción de 1RM más precisa de aquellas propuestas en la literatura y empleadas en este estudio. La ecuación de predicción de la 1RM de Epley es reproducida mediante simulación de datos a partir de algunas ecuaciones de predicción de la 1RM propuestas con anterioridad. Finalmente, se proponen futuras líneas de investigación relacionadas con el problema de la predicción de la 1RM mediante algoritmos genéticos, redes neuronales y técnicas de clustering.