912 resultados para CURVATURE
Resumo:
One of the primary treatment goals of adolescent idiopathic scoliosis (AIS) surgery is to achieve maximum coronal plane correction while maintaining coronal balance. However maintaining or restoring sagittal plane spinal curvature has become increasingly important in maintaining the long-term health of the spine. Patients with AIS are characterised by pre-operative thoracic hypokyphosis, and it is generally agreed that operative treatment of thoracic idiopathic scoliosis should aim to restore thoracic kyphosis to normal values while maintaining lumbar lordosis and good overall sagittal balance. The aim of this study was to evaluate CT sagittal plane parameters, with particular emphasis on thoracolumbar junctional alignment, in patients with AIS who underwent Video Assisted Thoracoscopic Spinal Fusion and Instrumentation (VATS). This study concluded that video-assisted thoracoscopic spinal fusion and instrumentation reliably increases thoracic kyphosis while preserving junctional alignment and lumbar lordosis in thoracic AIS.
Resumo:
Several approaches have been proposed to recognize handwritten Bengali characters using different curve fitting algorithms and curvature analysis. In this paper, a new algorithm (Curve-fitting Algorithm) to identify various strokes of a handwritten character is developed. The curve-fitting algorithm helps recognizing various strokes of different patterns (line, quadratic curve) precisely. This reduces the error elimination burden heavily. Implementation of this Modified Syntactic Method demonstrates significant improvement in the recognition of Bengali handwritten characters.
Resumo:
Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.
Resumo:
Shell structures find use in many fields of engineering, notably structural, mechanical, aerospace and nuclear-reactor disciplines. Axisymmetric shell structures are used as dome type of roofs, hyperbolic cooling towers, silos for storage of grain, oil and industrial chemicals and water tanks. Despite their thin walls, strength is derived due to the curvature. The generally high strength-to-weight ratio of the shell form, combined with its inherent stiffness, has formed the basis of this vast application. With the advent in computation technology, the finite element method and optimisation techniques, structural engineers have extremely versatile tools for the optimum design of such structures. Optimisation of shell structures can result not only in improved designs, but also in a large saving of material. The finite element method being a general numerical procedure that could be used to treat any shell problem to any desired degree of accuracy, requires several runs in order to obtain a complete picture of the effect of one parameter on the shell structure. This redesign I re-analysis cycle has been achieved via structural optimisation in the present research, and MSC/NASTRAN (a commercially available finite element code) has been used in this context for volume optimisation of axisymmetric shell structures under axisymmetric and non-axisymmetric loading conditions. The parametric study of different axisymmetric shell structures has revealed that the hyperbolic shape is the most economical solution of shells of revolution. To establish this, axisymmetric loading; self-weight and hydrostatic pressure, and non-axisymmetric loading; wind pressure and earthquake dynamic forces have been modelled on graphical pre and post processor (PATRAN) and analysis has been performed on two finite element codes (ABAQUS and NASTRAN), numerical model verification studies are performed, and optimum material volume required in the walls of cylindrical, conical, parabolic and hyperbolic forms of axisymmetric shell structures are evaluated and reviewed. Free vibration and transient earthquake analysis of hyperbolic shells have been performed once it was established that hyperbolic shape is the most economical under all possible loading conditions. Effect of important parameters of hyperbolic shell structures; shell wall thickness, height and curvature, have been evaluated and empirical relationships have been developed to estimate an approximate value of the lowest (first) natural frequency of vibration. The outcome of this thesis has been the generation of new research information on performance characteristics of axisymmetric shell structures that will facilitate improved designs of shells with better choice of shapes and enhanced levels of economy and performance. Key words; Axisymmetric shell structures, Finite element analysis, Volume Optimisation_ Free vibration_ Transient response.
Resumo:
Maintenance trains travel in convoy. In Australia, only the first train of the convoy pays attention to the track sig- nalization (the other convoy vehicles simply follow the preceding vehicle). Because of human errors, collisions can happen between the maintenance vehicles. Although an anti-collision system based on a laser distance meter is already in operation, the existing system has a limited range due to the curvature of the tracks. In this paper, we introduce an anti-collision system based on vision. The two main ideas are, (1) to warp the camera image into an image where the rails are parallel through a projective transform, and (2) to track the two rail curves simultaneously by evaluating small parallel segments. The performance of the system is demonstrated on an image dataset.
Resumo:
The rural two-lane highway in the southeastern United States is frequently associated with a disproportionate number of serious and fatal crashes and as such remains a focus of considerable safety research. The Georgia Department of Transportation spearheaded a regional fatal crash analysis to identify various safety performances of two-lane rural highways and to offer guidance for identifying suitable countermeasures with which to mitigate fatal crashes. The fatal crash data used in this study were compiled from Alabama, Georgia, Mississippi, and South Carolina. The database, developed for an earlier study, included 557 randomly selected fatal crashes from 1997 or 1998 or both (this varied by state). Each participating state identified the candidate crashes and performed physical or video site visits to construct crash databases with enhance site-specific information. Motivated by the hypothesis that single- and multiple-vehicle crashes arise from fundamentally different circumstances, the research team applied binary logit models to predict the probability that a fatal crash is a single-vehicle run-off-road fatal crash given roadway design characteristics, roadside environment features, and traffic conditions proximal to the crash site. A wide variety of factors appears to influence or be associated with single-vehicle fatal crashes. In a model transferability assessment, the authors determined that lane width, horizontal curvature, and ambient lighting are the only three significant variables that are consistent for single-vehicle run-off-road crashes for all study locations.
Resumo:
In many bridges, vertical displacements are one of the most relevant parameters for structural health monitoring in both the short and long terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fiber-optic technologies, fiber Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, using FBG sensors is proposed to develop a simple, inexpensive and practical method to measure vertical displacements of bridges. A curvature approach for vertical displacement measurement using curvature measurements is proposed. In addition, with the successful development of a FBG tilt sensors, an inclination approach is also proposed using inclination measurements. A series of simulation tests of a full-scale bridge was conducted. It shows that both the approaches can be implemented to determine vertical displacements for bridges with various support conditions, varying stiffness (EI) along the spans and without any prior known loading. These approaches can thus measure vertical displacements for most of slab-on-girder and box-girder bridges. Moreover, with the advantages of FBG sensors, they can be implemented to monitor bridge behavior remotely and in real time. Further recommendations of these approaches for developments will also be discussed at the end of the paper.
Resumo:
Magnetic Resonance Imaging was used to study changes in the crystalline lens and ciliary body with accommodation and aging. Monocular images were obtained in 15 young (19-29 years) and 15 older (60-70 years) emmetropes when viewing at far (6m) and at individual near points (14.5 to 20.9 cm) in the younger group. With accommodation, lens thickness increased (mean±95% CI: 0.33±0.06mm) by a similar magnitude to the decrease in anterior chamber depth (0.31±0.07mm) and equatorial diameter (0.32±0.04mm) with a decrease in the radius of curvature of the posterior lens surface (0.58±0.30mm). Anterior lens surface shape could not be determined due to the overlapping region with the iris. Ciliary ring diameter decreased (0.44±0.17mm) with no decrease in circumlental space or forward ciliary body movement. With aging, lens thickness increased (mean±95% CI: 0.97±0.24mm) similar in magnitude to the sum of the decrease in anterior chamber depth (0.45±0.21mm) and increase in anterior segment depth (0.52±0.23mm). Equatorial lens diameter increased (0.28±0.23mm) with no change in the posterior lens surface radius of curvature. Ciliary ring diameter decreased (0.57±0.41mm) with reduced circumlental space (0.43±0.15mm) and no forward ciliary body movement. Accommodative changes support the Helmholtz theory of accommodation including an increase in posterior lens surface curvature. Certain aspects of aging changes mimic accommodation.
Resumo:
In addition to his work on physical optics, Thomas Young (1773-1829) made several contributions to geometrical optics, most of which received little recognition in his time or since. We describe and assess some of these contributions: Young’s construction (the basis for much of his geometric work), paraxial refraction equations, oblique astigmatism and field curvature, and gradient-index optics.
Resumo:
Purpose: To determine likely errors in estimating retinal shape using partial coherence interferometric instruments when no allowance is made for optical distortion. Method: Errors were estimated using Gullstrand’s No. 1 schematic eye and variants which included a 10 D axial myopic eye, an emmetropic eye with a gradient-index lens, and a 10.9 D accommodating eye with a gradient-index lens. Performance was simulated for two commercial instruments, the IOLMaster (Carl Zeiss Meditec) and the Lenstar LS 900 (Haag-Streit AG). The incident beam was directed towards either the centre of curvature of the anterior cornea (corneal-direction method) or the centre of the entrance pupil (pupil-direction method). Simple trigonometry was used with the corneal intercept and the incident beam angle to estimate retinal contour. Conics were fitted to the estimated contours. Results: The pupil-direction method gave estimates of retinal contour that were much too flat. The cornea-direction method gave similar results for IOLMaster and Lenstar approaches. The steepness of the retinal contour was slightly overestimated, the exact effects varying with the refractive error, gradient index and accommodation. Conclusion: These theoretical results suggest that, for field angles ≤30º, partial coherence interferometric instruments are of use in estimating retinal shape by the corneal-direction method with the assumptions of a regular retinal shape and no optical distortion. It may be possible to improve on these estimates out to larger field angles by using optical modeling to correct for distortion.
Resumo:
In order to gain a competitive edge in the market, automotive manufacturers and automotive seat suppliers have identified seat ergonomics for further development to improve overall vehicle comfort. Adjustable lumbar support devices have been offered since long as comfort systems in either a 2-way or 4-way adjustable configuration, although their effect on lumbar strain is not well documented. The effect of a lumbar support on posture and muscular strain, and therefore the relationship between discomfort and comfort device parameter settings, requires clarification. The aim of this paper is to study the effect of a 4-way lumbar support on lower trunk and pelvis muscle activity, pelvic tilt and spine curvature during a car seating activity. 10 healthy subjects (5 m/f; age 19-39) performed a seating activity in a passenger vehicle with seven different static lumbar support positions. The lumbar support was tested in 3 different height positions in relation to the seatback surface centreline (high, centre, low), each having 2 depths positions (lumbar prominence). An extra depth position was added for the centre position. Posture data were collected using a VICON MX motion capture system and NORAXON DTS goniometers and inclinometer. A rigid-body model of an adjustable car seat with four-way adjustable lumbar support was constructed in UGS Siemens NX and connected to a musculoskeletal model of a seated-human, modelled in AnyBody. Wireless electromyography (EMG) was used to calibrate the musculoskeletal model and assess the relationship between (a) muscular strain and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface), (b) hip joint moment and lumbar prominence (normal to seatback surface) respective to lumbar height (alongside seatback surface) and (c) pelvic tilt and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface). This study was based on the assumption that the musculoskeletal human model was seated at the correct R-Point (SgRP), determined via the occupant packaging toolkit in the JACK digital human model. The effect of the interaction between the driver/car-seat has been investigated for factors resulting from the presence and adjustment of a 4-way lumbar support. The results obtained show that various seat adjustments, and driver’s lumbar supports can have complex influence on the muscle activation, joint forces and moments, all of which can affect the comfort perception of the driver. This study enables the automotive industry to optimise passenger vehicle seat development and design. It further more supports the evaluation of static postural and dynamic seat comfort in normal everyday driving tasks and can be applied for future car design to reduce investment and improve comfort.
Resumo:
Contact lenses are a common method for the correction of refractive errors of the eye. While there have been significant advancements in contact lens designs and materials over the past few decades, the lenses still represent a foreign object in the ocular environment and may lead to physiological as well as mechanical effects on the eye. When contact lenses are placed in the eye, the ocular anatomical structures behind and in front of the lenses are directly affected. This thesis presents a series of experiments that investigate the mechanical and physiological effects of the short-term use of contact lenses on anterior and posterior corneal topography, corneal thickness, the eyelids, tarsal conjunctiva and tear film surface quality. The experimental paradigm used in these studies was a repeated measures, cross-over study design where subjects wore various types of contact lenses on different days and the lenses were varied in one or more key parameters (e.g. material or design). Both, old and newer lens materials were investigated, soft and rigid lenses were used, high and low oxygen permeability materials were tested, toric and spherical lens designs were examined, high and low powers and small and large diameter lenses were used in the studies. To establish the natural variability in the ocular measurements used in the studies, each experiment also contained at least one “baseline” day where an identical measurement protocol was followed, with no contact lenses worn. In this way, changes associated with contact lens wear were considered in relation to those changes that occurred naturally during the 8 hour period of the experiment. In the first study, the regional distribution and magnitude of change in corneal thickness and topography was investigated in the anterior and posterior cornea after short-term use of soft contact lenses in 12 young adults using the Pentacam. Four different types of contact lenses (Silicone hydrogel/ Spherical/–3D, Silicone Hydrogel/Spherical/–7D, Silicone Hydrogel/Toric/–3D and HEMA/Toric/–3D) of different materials, designs and powers were worn for 8 hours each, on 4 different days. The natural diurnal changes in corneal thickness and curvature were measured on two separate days before any contact lens wear. Significant diurnal changes in corneal thickness and curvature within the duration of the study were observed and these were taken into consideration for calculating the contact lens induced corneal changes. Corneal thickness changed significantly with lens wear and the greatest corneal swelling was seen with the hydrogel (HEMA) toric lens with a noticeable regional swelling of the cornea beneath the stabilization zones, the thickest regions of the lenses. The anterior corneal surface generally showed a slight flattening with lens wear. All contact lenses resulted in central posterior corneal steepening, which correlated with the relative degree of corneal swelling. The corneal swelling induced by the silicone hydrogel contact lenses was typically less than the natural diurnal thinning of the cornea over this same period (i.e. net thinning). This highlights why it is important to consider the natural diurnal variations in corneal thickness observed from morning to afternoon to accurately interpret contact lens induced corneal swelling. In the second experiment, the relative influence of lenses of different rigidity (polymethyl methacrylate – PMMA, rigid gas permeable – RGP and silicone hydrogel – SiHy) and diameters (9.5, 10.5 and 14.0) on corneal thickness, topography, refractive power and wavefront error were investigated. Four different types of contact lenses (PMMA/9.5, RGP/9.5, RGP/10.5, SiHy/14.0), were worn by 14 young healthy adults for a period of 8 hours on 4 different days. There was a clear association between fluorescein fitting pattern characteristics (i.e. regions of minimum clearance in the fluorescein pattern) and the resulting corneal shape changes. PMMA lenses resulted in significant corneal swelling (more in the centre than periphery) along with anterior corneal steepening and posterior flattening. RGP lenses, on the other hand, caused less corneal swelling (more in the periphery than centre) along with opposite effects on corneal curvature, anterior corneal flattening and posterior steepening. RGP lenses also resulted in a clinically and statistically significant decrease in corneal refractive power (ranging from 0.99 to 0.01 D), large enough to affect vision and require adjustment in the lens power. Wavefront analysis also showed a significant increase in higher order aberrations after PMMA lens wear, which may partly explain previous reports of "spectacle blur" following PMMA lens wear. We further explored corneal curvature, thickness and refractive changes with back surface toric and spherical RGP lenses in a group of 6 subjects with toric corneas. The lenses were worn for 8 hours and measurements were taken before and after lens wear, as in previous experiments. Both lens types caused anterior corneal flattening and a decrease in corneal refractive power but the changes were greater with the spherical lens. The spherical lens also caused a significant decrease in WTR astigmatism (WRT astigmatism defined as major axis within 30 degrees of horizontal). Both the lenses caused slight posterior corneal steepening and corneal swelling, with a greater effect in the periphery compared to the central cornea. Eyelid position, lid-wiper and tarsal conjunctival staining were also measured in Experiment 2 after short-term use of the rigid and SiHy contact lenses. Digital photos of the external eyes were captured for lid position analysis. The lid-wiper region of the marginal conjunctiva was stained using fluorescein and lissamine green dyes and digital photos were graded by an independent masked observer. A grading scale was developed in order to describe the tarsal conjunctival staining. A significant decrease in the palpebral aperture height (blepharoptosis) was found after wearing of PMMA/9.5 and RGP/10.5 lenses. All three rigid contact lenses caused a significant increase in lid-wiper and tarsal staining after 8 hours of lens wear. There was also a significant diurnal increase in tarsal staining, even without contact lens wear. These findings highlight the need for better contact lens edge design to minimise the interactions between the lid and contact lens edge during blinking and more lubricious contact lens surfaces to reduce ocular surface micro-trauma due to friction and for. Tear film surface quality (TFSQ) was measured using a high-speed videokeratoscopy technique in Experiment 2. TFSQ was worse with all the lenses compared to baseline (PMMA/9.5, RGP/9.5, RGP/10.5, and SiHy/14) in the afternoon (after 8 hours) during normal and suppressed blinking conditions. The reduction in TFSQ was similar with all the contact lenses used, irrespective of their material and diameter. An unusual pattern of change in TFSQ in suppressed blinking conditions was also found. The TFSQ with contact lens was found to decrease until a certain time after which it improved to a value even better than the bare eye. This is likely to be due to the tear film drying completely over the surface of the contact lenses. The findings of this study also show that there is still a scope for improvement in contact lens materials in terms of better wettability and hydrophilicity in order to improve TFSQ and patient comfort. These experiments showed that a variety of changes can occur in the anterior eye as a result of the short-term use of a range of commonly used contact lens types. The greatest corneal changes occurred with lenses manufactured from older HEMA and PMMA lens materials, whereas modern SiHy and rigid gas permeable materials caused more subtle changes in corneal shape and thickness. All lenses caused signs of micro-trauma to the eyelid wiper and palpebral conjunctiva, although rigid lenses appeared to cause more significant changes. Tear film surface quality was also significantly reduced with all types of contact lenses. These short-term changes in the anterior eye are potential markers for further long term changes and the relative differences between lens types that we have identified provide an indication of areas of contact lens design and manufacture that warrant further development.
Resumo:
Purpose: The aim of this cross-over study was to investigate the changes in corneal thickness, anterior and posterior corneal topography, corneal refractive power and ocular wavefront aberrations, following the short term use of rigid contact lenses. Method: Fourteen participants wore 4 different types of contact lenses (RGP lenses of 9.5 mm and 10.5 mm diameter, and for comparison a PMMA lens of 9.5 mm diameter and a soft silicone hydrogel lens) on 4 different days for a period of 8 h on each day. Measures were collected before and after contact lens wear and additionally on a baseline day. Results: Anterior corneal curvature generally showed a flattening with both of the RGP lenses and a steepening with the PMMA lens. A significant negative correlation was found between the change in corneal swelling and central and peripheral posterior corneal curvature (all p ≤ 0.001). RGP contact lenses caused a significant decrease in corneal refractive power (hyperopic shift) of approximately 0.5 D. The PMMA contact lenses caused the greatest corneal swelling in both the central (27.92 ± 15.49 μm, p < 0.001) and peripheral (17.78 ± 12.11 μm, p = 0.001) corneal regions, a significant flattening of the posterior cornea and an increase in ocular aberrations (all p ≤ 0.05). Conclusion: The corneal swelling associated with RGP lenses was relatively minor, but there was slight central corneal flattening and a clinically significant hyperopic change in corneal refractive power after the first day of lens wear. The PMMA contact lenses resulted in significant corneal swelling and reduced optical performance of the cornea.
Resumo:
Vertical displacements are one of the most relevant parameters for structural health monitoring of bridges in both the short and long terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fiber-optic technologies, fiber Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, using FBG sensors is proposed to develop a simple, inexpensive and practical method to measure vertical displacements of bridges. A curvature approach for vertical displacement measurements using curvature measurements is proposed. In addition, with the successful development of FBG tilt sensors, an inclination approach is also proposed using inclination measurements. A series of simulation tests of a full- scale bridge was conducted. It shows that both of the approaches can be implemented to determine vertical displacements for bridges with various support conditions, varying stiffness (EI) along the spans and without any prior known loading. These approaches can thus measure vertical displacements for most of slab-on-girder and box-girder bridges. Besides, the approaches are feasible to implement for bridges under various loading. Moreover, with the advantages of FBG sensors, they can be implemented to monitor bridge behavior remotely and in real time. A beam loading test was conducted to determine vertical displacements using FBG strain sensors and tilt sensors. The discrepancies as compared with dial gauges reading using the curvature and inclination approaches are 0.14mm (1.1%) and 0.41mm (3.2%), respectively. Further recommendations of these approaches for developments will also be discussed at the end of the paper.
Resumo:
Adolescent idiopathic scoliosis is a complex three dimensional deformity affecting 2-3% of the general population. The resulting spinal deformity consists of coronal curvature, hypokyphosis of the thoracic spine and vertebral rotation in the axial plane with posterior elements turned into the curve concavity. The potential for curve progression is heightened during the adolescent growth spurt. Success of scoliosis deformity correction depends on solid bony fusion between adjacent vertebrae after the intervertebral (IV) discs have been surgically cleared and the disc spaces filled with graft material. Recently a bioactive and resorbable scaffold fabricated from medical grade polycaprolactone has been developed for bone regeneration at load bearing sites. Combined with rhBMP-2, this has been shown to be successful in acting as a bone graft substitute in a porcine lumbar interbody fusion model when compared to autologous bone graft alone. The study aimed to establish a large animal thoracic spine interbody fusion model, develop spine biodegradable scaffolds (PCL) in combination with biologics (rhBMP-2) and to establish a platform for research into spine tissue engineering constructs. Preliminary results demonstrate higher grades of radiologically evident bony fusion across all levels when comparing fusion scores between the 3 and 6 month postop groups at the PCL CaP coated scaffold level, which is observed to be a similar grade to autograft, while no fusion is seen at the scaffold only level. Results to date suggest that the combination of rhBMP-2 and scaffold engineering actively promotes bone formation, laying the basis of a viable tissue engineered constructs.