991 resultados para COPHYLOGENY RECONSTRUCTION PROBLEM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In New Zealand, the turn from the welfare state since 1984 to a global market driven economy in the early mid 1990s has affected the way that primary curriculum documents have been developed and implemented. Those documents, together with teachers’ handbooks, have in turn affected the way that teachers teach. In particular, the construction of literacy and what constitutes literacy teaching in these documents have affected teachers’ work and have also constructed and are reconstructing childhood and the child literate. The way that teachers teach literacy depends on their constructions of children and childhood and that as their views of childhood and children change, so too do their views of the teaching of literacy. Against this background of locating childhood and children in educational and literacy discourses, other discourses of new technologies, cultural diversity, time and space of “new times” are also challenging the construction of literacy, the literate child and childhood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Couples with alcohol and relationship problems often report poor communication, yet little is known about the communication of maritally distressed couples in which the woman abuses alcohol (MDWA couples). Compared with maritally distressed couples without alcohol problems (MDNA) and couples with neither problem (NDNA), MDWA couples showed a distinctive pattern of negative communication. Similar to MDNA men, MDWA men spoke negatively to their partners but listened positively to their partners much like NDNA men. MDWA women listened negatively, much as MDNA women did, but spoke positively, like NDNA women did. The interactions of MDWA couples can be characterized as a male-demand-female-withdraw pattern, which is a gender reversal of the female-demand-male-withdraw pattern often observed in MDNA couples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we study the quasiequilibrium problem and generalized quasiequilibrium problem of generalized quasi-variational inequality in H-spaces by a new method. Some new equilibrium existence theorems are given. Our results are different from corresponding given results or contain some recent results as their special cases. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 8-year-old female neutered Siamese cat was presented with a recent history of incomplete excision of an apocrine gland adenocarcinoma from the palmar aspect of the right antebrachium, just proximal to the carpal joint. There was no evidence of metastasis. Wide surgical excision of the previous surgery site was performed resulting in a soft tissue defect. Partial reconstruction was achieved using digital pad transposition of the first digit (dewclaw), forming a local axial pattern flap that was transposed into the adjacent defect. The remaining defect was closed by primary apposition. The skin flap healed successfully. Some breakdown of the skin closed by primary apposition necessitated open wound management. The cosmetic and functional result of the first digital pad transposition was considered excellent, rendering it a useful means to reconstruct soft tissue defects in the carpal region.